SWEAT RATE AND SWEAT-ELECTROLYTE COMPOSITION IN ATHLETES EXPERIENCING **RECURRENT MUSCLE CRAMPS VERSUS MATCHED CONTROLS**

Robert Clay Townsend, MS, ATC; Brendon P. McDermott, PhD, ATC

BACKGROUND AND PURPOSE

- Exercise-associated muscle cramps are intense, painful contractions of skeletal muscles that occur during or immediately following physical exertion
- There are 2 prevailing theories to explain the etiology of exercise-associated muscle cramps²
 - 1) Overuse, or neuromuscular fatigue²
 - 2) Dehydration and/or abnormal electrolyte concentrations²
- Depletion of electrolytes sodium (Na⁺) and chloride (Cl⁻) are associated with muscle cramps¹
- Muscle cramps and electrolyte depletion can be managed through proper fluid replacement⁴
- The purpose of this study was to compare sweat rate (SR) and sweat electrolyte concentrations between cramp-prone (CP) to matched-control (MC) athletes

PARTICIPANT CHARACTERISTICS

- Twenty-four (12 CP; 12 MC) competitive and recreational male athletes participated
- High school football (n=14), college football (n=6), cross-country (n=2), cycling (n=2)
- CP defined as athletes who had experienced recurrent cramps over the previous 12 months
- Available MC athletes matched as closely as possible to CP athletes
 - Age, body mass, % body fat, gender, sport, position, and heat-acclimatization status

	СР		МС	
Age (years)	21	8	21	8
% Body Fat	13.5	3.5	13.9	3.6
Body Mass (kg)	94.7	20.5	96.8	19.7

Figure 1. Sweat patch

METHODS

- Testing performed in climate-controlled location or at assigned practice facility
 - Pre-exercise body mass assessed using a standard scale (Tanita Arlington Heights, IL)
 - Right proximal forearm cleaned using 70% isopropyl alcohol and allowed to dry
 - Sterile gauze pad placed on forearm and covered with transparent dressing (Figure 1)
 - Subjects then exercised for a minimum of 45 minutes (sport-specific activities)
 - Exercise regimen identical for each matched pair of athletes for a given session
 - Post-exercise body mass measured
- SR = (pre-exercise body mass post-exercise mass + fluid consumed) / exercise duration
- Following exercise, gauze removed and centrifuged to extract sweat
- Sweat-electrolyte concentrations (mEq[.]L⁻¹) determined using ion-specific electrode analysis
 - EasyLyte Plus Na/K/CI Analyzer (Medica Corporation, Bedford, MA)
- Data analyzed by independent t-tests ($\alpha = .05$), receiver operating characteristic (ROC) analysis, Fisher's exact test, sensitivity (Sn), specificity (Sp), and odds ratio (OR)

RESULTS

- One CP and one MC removed due to MC outlier sweat [Na⁺] (>2 SD above group mean)
- Independent t-test results:
 - No significant difference between groups for SR (p=.398) or sweat [K⁺] (p=.142)
 - CP significantly greater than MC in terms of sweat [Na⁺] (p=.025) and sweat [Cl⁻] (p=.040)
- Dichotomized univariable analysis results:
 - Group membership (CP vs. MC) associated with SR, sweat [Na⁺], and sweat [Cl⁻]
 - CP approximately 8 X more likely than MC to have SR \geq 1.23 L·h⁻¹
 - CP 15 X more likely than MC to have a sweat $[Na^+] \ge 29.38 \text{ mEg} \cdot \text{L}^{-1}$
 - CP 15 X more likely than MC to have a sweat $[CI^{-1}] \ge 24.13 \text{ mEq} \cdot \text{L}^{-1}$

THE UNIVERSITY of TENNESSEE CHATTANOOGA

Group	SR (L·h⁻¹)	Na+ (mEq.L-1)	CI- (mEq.L-1)	K+ (mEq.L-1)	
СР	2.13 0.99	48.03 27.69	38.65 25.03	5.74 0.84	
MC	1.82 0.80	26.09 15.28	20.48 14.32	6.49 1.40	

Variable

SR (L·h⁻¹)

Na+ (mEq.

CI- (mEq.L

1.	Sch
1.	nov
2.	Bei 200
3.	Eic
4.	Sto to h

Table 2. Means and Standard Deviations

	Cut-point	Sn	Sp	OR	OR 90% CI
	1.23	90.7%	41.7%	7.86	1.10 – 56.32
.L-1)	29.38	75.0%	83.3%	15.00	2.79 – 80.57
1)	24.13	75.0%	83.3%	15.00	2.79 – 80.57

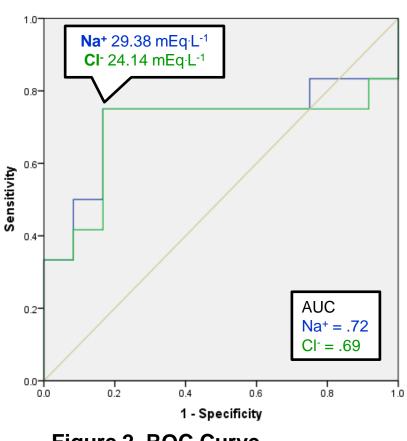


Figure 2. ROC Curve

Table 3. Results of Univariable Analyses

CONCLUSIONS

• The results suggest that increased sweat [Na⁺] and sweat [Cl⁻] predispose athletes to cramps

• Sweat-electrolyte concentration strongly discriminates CP athletes from MC athletes

• SR appears to have less predictive power for identification of recurrent muscle crampers

NaCl supplementation may attenuate recurrent exercise-associated muscle cramps

REFERENCES

wellnus MP, Derman EW, Noakes TD. Aetiology of skeletal muscle "cramps" during exercise: a ovel hypothesis. J Sports Sci. 1997;15:277-285.

ergeron MF. Muscle cramps during exercise – Is it fatigue or electrolyte deficit? Curr Sports Med Rep. 08;7:50-55.

chner RE. Heat cramps in sports. Sports Med Pearls Pitfalls. 2008;7:178-179.

ofan JR, Zachwieja JJ, Horswill CA. Sweat and sodium losses in NCAA football players: a precursor heat cramps? Int J Sport Nutr Exerc Metab. 2005;15:641-652.