Association of Neuromechanical Responsiveness with Lower Extremity Injury Damon R. Sowers, MS, ATC; Sydney L. Rubingh, MS, ATC; Shellie N. Acocello PhD, ATC; Gary B. Wilkerson EdD, ATC; Dustin C.Nabhan, DC, DACBSP, FACSM

THE UNIVERSITY of TENNESSEE CHATTANOOGA

BACKGROUND AND PURPOSE

Lower extremity injury is extremely common among athletes, which frequently leads to chronic dysfunction and disability^{1,2}

- Little evidence exists to support specific methods for identification of elevated injury risk or reduction of risk³
- · Although some tests have been validated for specific populations, tests with broad applicability are needed Neuromechanical responsiveness may be a critical factor for injury avoidance that may be overlooked by clinicians
- Previous injuries can have persisting adverse effects on functional capabilities that do not necessarily resolve over time⁴
- · Visual-motor reaction time (VMRT) and whole-body reactive agility (WBRA) may be important in this regard
- · Integration of visual-cognitive-motor processes required to effectively respond to changing environmental conditions
- Musculoskeletal injury may disrupt neuromechanical responsiveness, without overt evidence of an impairment
- Our purpose was to retrospectively assess associations between indicators of neuromechanical responsiveness and history of time-loss lower extremity sprains and strains over the previous 12-month period among elite athletes

PARTICIPANTS & PROCEDURES

48 healthy participants recruited at Olympic Training Center, with all testing completed at a single session • 34 males: 23.8 ±4.4 yrs, 178.3 ±8.9 cm, 80.2 ±17.5 kg; 14 females: 25.4 ±4.5 yrs, 160.2 ±27.8 cm, 64.2 ±12.8 kg Sport Fitness Index (SFI) administered to quantify persisting effects of previous musculoskeletal injuries (0-100 score) · Athlete self-report of time-loss lower extremity (LE) sprain or strain over previous 12 months used as binary classifier VMRT performance quantified by Dynavision D2[™] system (Dynavision International, West Chester, OH) (Figure 1) · Target buttons illuminated until hit; single-task 60-s practice trial and 60-s test trial, followed by dual-task 60-s trials Flanker test (VMRT+FT) – verbal responses to center arrow direction for 20 displays of 5-arrow sets on LCD screen · Scrolling text (VMRT+ST) - simultaneous verbal recitation of right-to-left scrolling text on LCD screen Average VMRT for all 5 rings and ratio of average VMRT for outer 2 rings to that for inner 3 rings (O/I) WBRA guantified by TRAZER® Sports Stimulator (Trag Global Ltd, Westlake, OH); 20-repitition side-shuffle test (Figure 2) · Proper movements guided by appearance of targets on large monitor in randomized directions (10 right and 10 left)

- · Start position 3.12 m from monitor; lateral shuffle movement of 0.91 m required to deactivate target on monitor
- · Reaction time (RT), acceleration (Acc), deceleration (Dec), speed (Spd), and bilateral differences (% Diff)
- · Receiver operating characteristic (ROC) analysis used to define optimal cut-point for each potential predictor variable
 - · Cross-tabulation and logistic regression analyses used to quantify exposure-outcome associations
- · Odds ratio (and one-sided 95% credible lower limit) calculated to quantify univariable and multivariable associations

RESULTS

 History of time-loss LE injury was reported by 46% of athletes (22/48) representing 6 different sport categories (Table 1) Sledding includes Bobsled and Skeleton; Multi-event includes Pentathlon, Track & Field, Triathlon, and Weightlifting

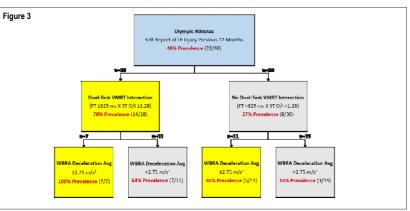

- · ROC and cross-tabulation analyses identified 8 variables strongly associated with history of time-loss LE injury (Table 2)
- Dual-Task VMRT interaction effect evident between VMRT-FT and VMRT+ST O/I (both factors positive)
- · Logistic regression analysis yielded a 2-factor model: 1) Dual-Task VMRT Interaction and 2) WBRA Dec Avg • Model $\chi^2(2) = 18.80$; $P \le 0.001$; Hosmer & Lemeshow goodness-of-fit $\chi^2(2) = 0.79$; P = .674; Nagelkerke R² = .433
- · Cascaded classification tree for 2-factor model (Dual-Task VMRT Interaction and WBRA Dec Avg) presented in Figure 4
- Both factors positive: 100% positive predictive value (7/7) for time-loss LE injury during previous 12 months
- Both factors negative: 84% negative predictive value (16/19) for no time-loss LE injury during previous 12 months

Table 2. Results of Univariable and Multivariable Analyses							
Predictor	Cut-Point	AUC	P-Value*	Sensitivity	Specificity	OR (CLL _{95%})	Adj OR (CLL _{95%})
VMRT Interaction**	Both +	-	.001	64%	85%	9.63 (3.04)	13.84 (3.66)
**VMRT+FT	≥ 825 ms	.656	.017	82%	54%	5.25 (1.72)	**
**VMRT+ST O/I	≥ 1.28	.629	.011	82%	54%	5.25 (1.72)	**
WBRA Dec Avg	≤ 2.75 m/s ²	.670	.022	55%	77%	4.00 (1.41)	6.47 (1.76)
WBRA Spd Avg	≤ 0.94 m/s	.664	.030	86%	42%	4.64 (1.38)	-
VMRT+FT O/I	≥ 1.36	.661	.021	68%	65%	4.04 (1.47)	-
WBRA Acc Avg	≤ 4.11 m/s ²	.660	.028	77%	54%	3.96 (1.38)	-
SFI	≤ 64	.690	.040	82%	46%	3.85 (1.26)	-
WBRA RT % Diff	≥ 16.3	.631	.043	64%	65%	3.30 (1.22)	_
2-Factor Model	≥1+	.801	.001	86%	62%	10.13 (3.00)	_

CLINICAL RELEVANCE

- · Combined results of Dual-Task VMRT tests and WBRA test demonstrated very strong association with injury history
- Injury may have persisting effect on neuromechanical responsiveness, but pre-existing deficiency cannot be ruled out
- Whether cause or effect of previous injury, suboptimal Dual-Task VMRT or WBRA test results may elevate injury risk
- Individualized training for improvement of neuromechanical responsiveness may address a highly modifiable risk factor
- Risk screening test results should be used to guide development of training programs that target specific deficiencies
- Training programs focused solely on improvement of neuromuscular performance capabilities may be inadequate
- Our findings support emerging evidence that integration of visual, cognitive, and motor processing represents a critically important factor that can only be assessed by risk screening tests that impose complex neuromechanical demands

REFERENCES

1. LaBella CR. Common acute sports-related lower extremity injuries in children and adolescents. Clin Pediatr Emerg Med. 2007;8(1):31-42.

- 2. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311.
- 3. Meeuwisse WH. Assessing causation in sport injury: A multifactorial model. Clin J Sport Med. 1994;4(3):166-170.
- 4. Ward S, Pearce AJ, Pietrosimone B, Bennell K, Clark R, Bryant AL. Neuromuscular deficits after peripheral joint injury: a neurophysiological hypothesis. Muscle Nerve. 2015;51(3):327-332.
- 5. Wilkerson GB, Grooms DR, Acocello SN. Neuromechanical Considerations for Postconcussion Musculoskeletal Injury Risk Management. Curr Sports Med Rep. 2017;16(6):419-427.

* Fisher's Exact One-Sided Test