
9.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 9: Virtual Memory

nBackground
nDemand Paging
nCopy-on-Write
nPage Replacement
nAllocation of Frames
nThrashing

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Objectives

nTo describe the benefits of a virtual
memory system

nTo explain the concepts of demand
paging, page-replacement algorithms, and
allocation of page frames

nTo discuss the principle of the working-set
model

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Background

n Virtual memory – separation of user logical memory
from physical memory.
l Only part of the program needs to be in memory

for execution
l Logical address space can therefore be much

larger than physical address space
l Allows address spaces to be shared by several

processes
l Allows for more efficient process creation

n Virtual memory can be implemented via:
l Demand paging
l Demand segmentation

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Virtual Memory That is Larger Than Physical Memory

Þ

Backing store

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Virtual-address Space

Refers to the logical view of how
a process is stored in memory.

A process begins at a certain
logical address (such as 0) and
exists in contiguous memory.
Physical frames may not be
contiguous.

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Shared Library Using Virtual Memory

Stack or heap grow if we wish to dynamically link libraries during
program execution.
System library can be shared by several process through mapping
the shared object into a virtual address space.

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Demand Paging

n Bring a page into memory only when it is needed
l Less I/O needed
l Less memory needed
l Faster response
l More users

n Page is needed Þ reference to it
l invalid reference Þ abort
l not-in-memory Þ bring to memory

n Lazy swapper – never swaps a page into memory unless page
will be needed
l Swapper that deals with pages is a pager

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

We use pager because it
is concerned with the
individual pages of a
process.

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Valid-Invalid Bit

n With each page table entry a valid–invalid bit is associated
(v Þ in-memory, i Þ not-in-memory)

n Initially valid–invalid bit is set to i on all entries
n Example of a page table snapshot:

n During address translation, if valid–invalid bit in page table entry
is i Þ page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Fault

n If there is a reference to a page, first reference to that page
will trap to operating system:

page fault
1. Operating system looks at another table to decide:

l Invalid reference Þ abort
l Just not in memory

2. Get empty frame
3. Swap page into frame
4. Reset tables
5. Set validation bit = v
6. Restart the instruction that caused the page fault

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Steps in Handling a Page Fault

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Fault (Cont.)

n Restart instruction
l The major difficulty arise when one instruction

may modify several different locations.
l One solution is to access both ends of both

blocks. If a page faulty is going to occur, it will
happen at this step before anything is
modified. The move can take place if all
relevant pages are in memory.

l The other solution uses temporary registers to
hold the values of overwritten locations.

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Performance of Demand Paging

n Page Fault Rate 0 £ p £ 1.0
l if p = 0 no page faults
l if p = 1, every reference is a fault

n Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Demand Paging Example

n Memory access time = 200 nanoseconds

n Average page-fault service time = 8 milliseconds

n EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000
= 200 + p x 7,999,800

n If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!
n We can allow fewer than one out of 399,990 page-fault.

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Creation

n Virtual memory allows other benefits during process
creation:
l Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in
memory.
If either process modifies a shared page, only then
is the page copied

l COW allows more efficient process creation as only
modified pages are copied

l Free pages are allocated from a pool of zeroed-out
pages

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Before Process 1 Modifies Page C

If process 1 attempts to modify page C of the stack, with the
page C set to by copy-on-write.

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

After Process 1 Modifies Page C

• Only the page C that are modified by process 1 is copied. All
unmodified pages can be shared by the parent and child
process.

• Only pages that can be modified need to be marked as copy-
on-write. Pages that cannot be modified can be shared by the
parent and child.

• Copy-on-write is a common technique used by several OS such
as Windows, Linux, and Solaris.

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

What happens if there is no free frame?

n Page replacement – find some page in memory,
but not really in use, swap it out
l algorithm
l performance – want an algorithm which will

result in minimum number of page faults
n Same page may be brought into memory

several times

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Need For Page Replacement

Over-allocating: There are
no free frames on the
frame-frame list; all
memory is in use when
user 1 tries to load M.

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Basic Page Replacement

1. Find the location of the desired page on disk
2. Find a free frame:

- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame
3. Bring the desired page into the (newly) free frame;

update the page and frame tables
4. Restart the process

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Replacement

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Replacement Algorithms

n Want lowest page-fault rate
n Evaluate algorithm by running it on a particular string

of memory references (reference string) and
computing the number of page faults on that string

n In all our examples, the reference string (the
sequence of 12 needed page number) is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Graph of Page Faults Versus The Number of Frames

• As the number of frames available increases, the number of
page faults should decrease.

• If only one frame available, we would have a replacement with
every reference, resulting in eleven faults.

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

First-In-First-Out (FIFO) Algorithm

n Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
n 3 frames (3 pages can be in memory at a time per process)

n 4 frames

n Belady’s Anomaly: more frames Þ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

More example -- FIFO Page Replacement

15 page faults

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Optimal Algorithm

n Replace page that will not be used for longest period of time
n 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n How do you know this?
n Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Example -- Optimal Page Replacement

The reference to page 2 replaces page 7 because page 7 will not
used until reference 18, whereas page 0 will be used at 5, and
page 1 at 14.
The reference to page 3 replaces page 1 as page 1 will be the last
of the three pages in memory to be referenced again.
9 page faults which is better than 15 ones in the FIFO algorithm.

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Least Recently Used (LRU) Algorithm

n The FIFO algorithm uses the time when a
page was brought into memory, whereas
the optimal replacement algorithm uses the
time when a page is to be used.

n If we use the recent past as an
approximation of the near future, we can
replace the page that has not been used
for the longest period of time.

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Least Recently Used (LRU) Algorithm

n Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n Counter implementation
l Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter
l When a page needs to be changed, look at the counters to

determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

LRU Page Replacement

When reference to page 4 occurs, of the three frames
in memory, page 2 was used least recently. LRU
replaces page 2, not knowing that page 2 is about to
be used.

12 page faults of LRU algorithm is still better than 15
from FIFO.

9.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

LRU Algorithm (Cont.)
n Stack implementation – keep a stack of page numbers in a double link

form:
l Page referenced:

4 When a page is the stack is referenced, it is moved to the top
4 requires 6 pointers to be changed

l No search for replacement

9.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

LRU Approximation Algorithms
n Reference bit (set by hardware)

l With each page associate a bit, initially = 0
l When page is referenced bit set to 1
l Replace the one which is 0 (if one exists)

4We do not know the order, however
l Provide basis for approximate LRU

replacement.

9.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Additional Reference Bits Algorithm
n Keep an 8-bit byte for each page in a table in

memory.
n At regular intervals, a time interrupt transfers

control to the OS.
n The OS shifts the reference bit for each page into

the high-order of its 8-bit byte, shifting the other
bits right by 1 bit and discarding the low-order bit.

n For example: 0000 1111 becomes 1000 0111
n If a page is never used, it is shift register contains

0000 0000, and 1111 1111 if it is used at least
once in each period.

n 1100 0100 is used more recently than 0111 0111.
The lower one can be replace.

9.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Second-Chance (clock) Page-Replacement Algorithm
n Second chance

l Need reference bit
l Clock replacement
l If page to be replaced (in clock

order) has reference bit = 0
then:
l Replace the page

l If page to be replaced (in clock
order) has reference bit = 1
then:
4 set reference bit 0
4 leave page in memory
4 It arrival time is reset to

current the current time

Got second
chance

9.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Allocation of Frames

n Each process needs minimum number of pages
n Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
l instruction is 6 bytes, might span 2 pages
l 2 pages to handle from
l 2 pages to handle to

n Two major allocation schemes
l fixed allocation
l priority allocation

9.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Fixed Allocation
n Equal allocation – For example, if there are 100 frames and 5 processes,

give each process 20 frames.
n Proportional allocation – Allocate according to the size of process

m
S
spa

m
sS

ps

i
ii

i

ii

´==

=
å=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

»´=

»´=

=

=
=

a

a

s
s
m

i

9.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Priority Allocation

n Use a proportional allocation scheme using priorities
rather than size

n If process Pi generates a page fault,
l select for replacement one of its frames
l select for replacement a frame from a process

with lower priority number
n Global replacement – process selects a

replacement frame from the set of all frames; one
process can take a frame from another

n Local replacement – each process selects from only
its own set of allocated frames

9.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thrashing

n If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
l low CPU utilization
l operating system thinks that it needs to increase the

degree of multiprogramming
l another process added to the system

n Thrashing º a process is busy swapping pages in and
out

9.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thrashing (Cont.)

The effective memory-access time increases.
No work is getting done, because the process are spending all
their time paging.

9.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Demand Paging and Thrashing

n Why does demand paging work?
Locality model
l Process migrates from one locality to another
l Localities may overlap
l For example, calling a function need memory

references to the instruction of the function
call, its local variables and subset of global
variables.

n Why does thrashing occur?
S size of locality > total memory size

9.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Locality In A Memory-Reference Pattern

Locality is a set of pages
that are actively used
together.
Localities are defined by
the program structure
and its data structure.

9.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Working-Set Model

n The working set model examines the most recent D page references.
n D º working-set window º a fixed number of page references

Example: 10,000 instruction
n WSSi (working set of Process Pi) =

total number of pages referenced in the most recent D (varies in time)
l if D too small will not encompass entire locality
l if D too large will encompass several localities
l if D = ¥ Þ will encompass entire program

n D = SWSSi º total demand frames
n if D > mÞ Thrashing, m is total available frames
n Policy: if D > m, then suspend one of the processes

9.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Working-set model

9.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Keeping Track of the Working Set

n Approximate with interval timer + a reference bit
n Example: D = 10,000

l Timer interrupts after every 5000 time units
l Keep in memory 2 bits for each page
l Whenever a timer interrupts copy and sets the values of all

reference bits to 0
l If one of the bits in memory = 1 Þ page in working set

n Why is this not completely accurate?
n Improvement = 10 bits and interrupt every 1000 time units
n OS monitors the working set of each process. If the sum exceeds

the total available frames, OS selects a process to suspend.

9.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page-Fault Frequency Scheme

n Establish “acceptable” page-fault rate
l If actual rate too low, process loses frame
l If actual rate too high, process gains frame

9.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Working Sets and Page Fault Rates

The page fault rate of the process will transition between peaks
and valleys over time.
When we begin demand-paging a new locality, a peak occurs.
When the working set of this new locality is in memory, the page-
fault falls.
When it moves to new locality, the page-fault rises again.

9.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

End of Chapter 9

