
Chapter 13: I/O Systems

• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Transforming I/O Requests to Hardware Operations

I/O Hardware
• Incredible variety of I/O devices
• Common concepts
– Port
– Bus (daisy chain or shared direct access)
– Controller (host adapter)

• I/O instructions control devices
• Devices have addresses, used by
– Direct I/O instructions (the controller has one or more

registers for data and control signals).
– Memory-mapped I/O (device control registers are

mapped into the address space of the processor).

A Typical PC Bus Structure

Device I/O Port Locations on PCs (partial)

Polling
• Determines state of device
– command-ready
– busy
– Error

• Busy-wait cycle to wait for I/O from device

Interrupts
• CPU Interrupt-request line (a wired in CPU hardware) triggered

by I/O device
• When the CPU detects that a controller has asserted a signal on

the interrupt-request line, the CPU performs a state save and
jump to the interrupt-handler routine at a fixed address in
memory.

• Maskable to ignore or delay some interrupts when CPU is
executing something critical

• Interrupt vector to dispatch interrupt to correct handler
– Based on priority
– Some nonmaskable

• Interrupt mechanism also used for exceptions

Interrupt-Driven I/O Cycle

Intel Pentium Processor Event-Vector Table

Direct Memory Access
• Used to avoid programmed I/O for large data movement
• Requires DMA controller
• Bypasses CPU to transfer data directly between I/O device

and memory

Six Step Process to Perform DMA Transfer

Application I/O Interface
• I/O system calls encapsulate device behaviors in generic

classes
• Device-driver layer hides differences among I/O controllers

from kernel
• Devices vary in many dimensions
– Character-stream or block
– Sequential or random-access
– Sharable or dedicated
– Speed of operation
– read-write, read only, or write only

A Kernel I/O Structure

Characteristics of I/O Devices

Block and Character Devices

• Block devices include disk drives
– Commands include read, write, seek
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character devices include keyboards, mice, serial ports
– Commands include get(), put()
– Libraries layered on top allow line editing

Network Devices

• Varying enough from block and character to have own
interface

• Unix and Windows NT/9x/2000 include socket interface
– Separates network protocol from network operation
– Includes select() functionality

• Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

Clocks and Timers

• Provide current time, elapsed time, timer
• Programmable interval timer used for timings,

periodic interrupts
• ioctl() (on UNIX) covers odd aspects of I/O such

as clocks and timers

Blocking and Nonblocking I/O

• Blocking - process suspended until I/O
completed
– Easy to use and understand
– Insufficient for some needs

• Nonblocking - I/O call returns as much as
available
– User interface, data copy (buffered I/O)
– Implemented via multi-threading
– Returns quickly with count of bytes read or

written

Two I/O Methods

Synchronous Asynchronous

Device-status Table

Sun Enterprise 6000 Device-Transfer Rates

Kernel I/O Subsystem

• Caching - fast memory holding copy of data
– Always just a copy
– Key to performance

• Spooling - hold output for a device
– If device can serve only one request at a time
– i.e., Printing

• Device reservation - provides exclusive access
to a device
– System calls for allocation and deallocation

Error Handling

• OS can recover from disk read, device unavailable,
transient write failures

• Most return an error number or code when I/O
request fails

• System error logs hold problem reports

I/O Protection

• User process may accidentally or purposefully
attempt to disrupt normal operation via illegal I/O
instructions
– All I/O instructions defined to be privileged
– I/O must be performed via system calls
• Memory-mapped and I/O port memory

locations must be protected too

Use of a System Call to Perform I/O

Kernel Data Structures

• Kernel keeps state info for I/O components, including open
file tables, network connections, character device state

• Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

• Some use object-oriented methods and message passing to
implement I/O

UNIX I/O Kernel Structure

I/O Requests to Hardware
Operations

• Consider reading a file from disk for a process:
– Determine device holding file
– Translate name to device representation
– Physically read data from disk into buffer
– Make data available to requesting process
– Return control to process

Life Cycle of An I/O Request

End of Chapter 13

