Chapter 15: Security

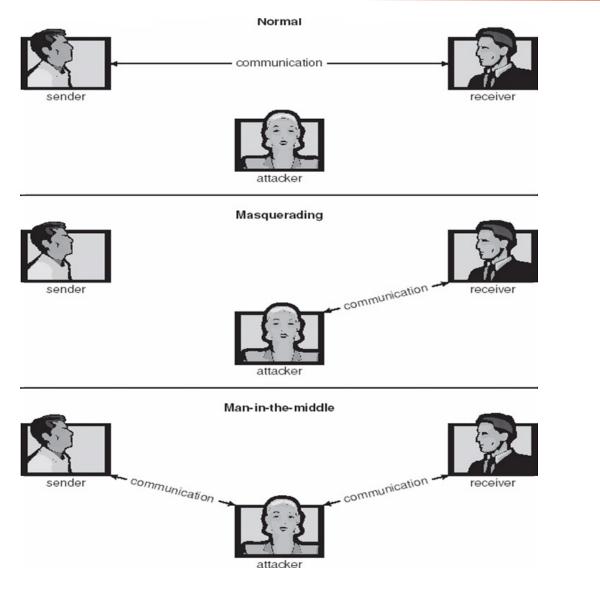
Operating System Concepts with Java – 8th Edition

Silberschatz, Galvin and Gagne ©2009

- The Security Problem
- Program Threats
- System and Network Threats
- Cryptography as a Security Tool
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks
- Computer-Security Classifications
- An Example: Windows XP

- To discuss security threats and attacks
- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse



- Categories
 - Breach of confidentiality
 - Breach of integrity
 - Breach of availability
 - Theft of service
 - Denial of service
- Methods
 - Masquerading (breach authentication)
 - Replay attack
 - Message modification
 - Man-in-the-middle attack
 - Session hijacking

Standard Security Attacks

Silberschatz, Galvin and Gagne ©2009

Security Measure Levels

Security must occur at four levels to be effective:

Physical

Human

- Avoid social engineering, phishing, dumpster diving
- Operating System

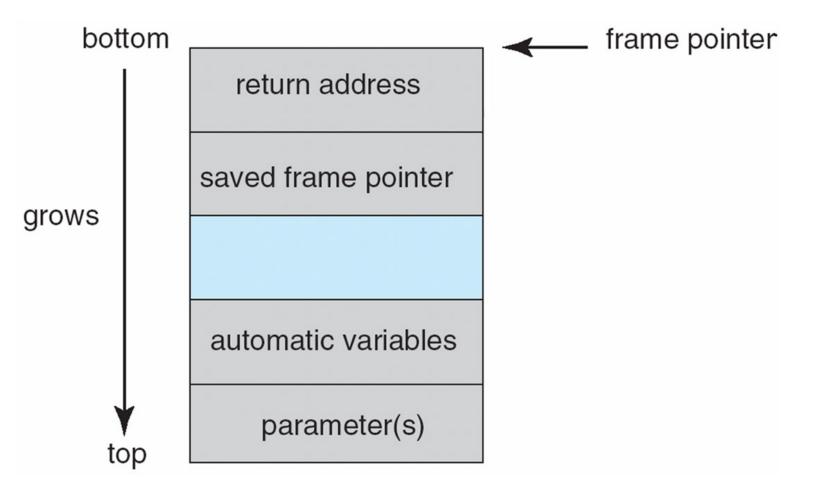
Network

Security is as weak as the weakest link in the chain

Program Threats

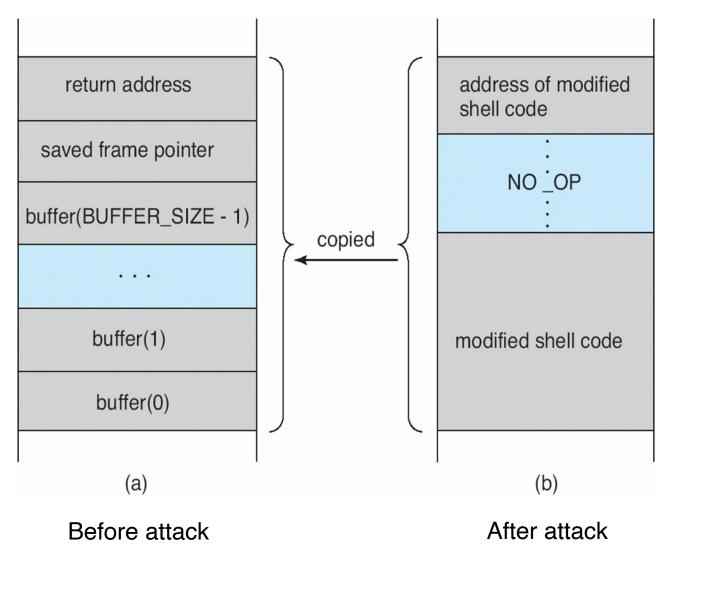
Trojan Horse

- Code segment that misuses its environment
- Exploits mechanisms for allowing programs written by users to be executed by other users
- Spyware, pop-up browser windows, covert channels
- Trap Door
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)


C Program with Buffer-overflow Condition

```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
{
  char buffer[BUFFER SIZE];
  if (argc < 2)
       return -1;
  else {
       strcpy(buffer, argv[1]);
       return 0;
```


Layout of Typical Stack Frame

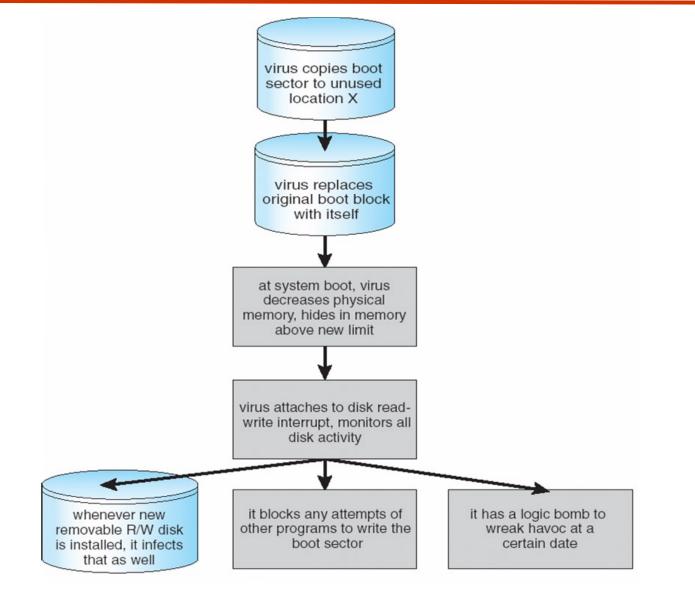

Modified Shell Code

```
#include <stdio.h>
int main(int argc, char *argv[])
{
    execvp(``\bin\sh'',``\bin \sh'', NULL);
    return 0;
}
```


Hypothetical Stack Frame

Operating System Concepts with Java – 8th Edition

Silberschatz, Galvin and Gagne ©2009


Program Threats (Cont.)

- Many categories of viruses, literally many thousands of viruses
 - File
 - Boot
 - Macro
 - Source code
 - Polymorphic
 - Encrypted
 - Stealth
 - Tunneling
 - Multipartite

A Boot-sector Computer Virus

Operating System Concepts with Java – 8th Edition

Silberschatz, Galvin and Gagne ©2009

System and Network Threats

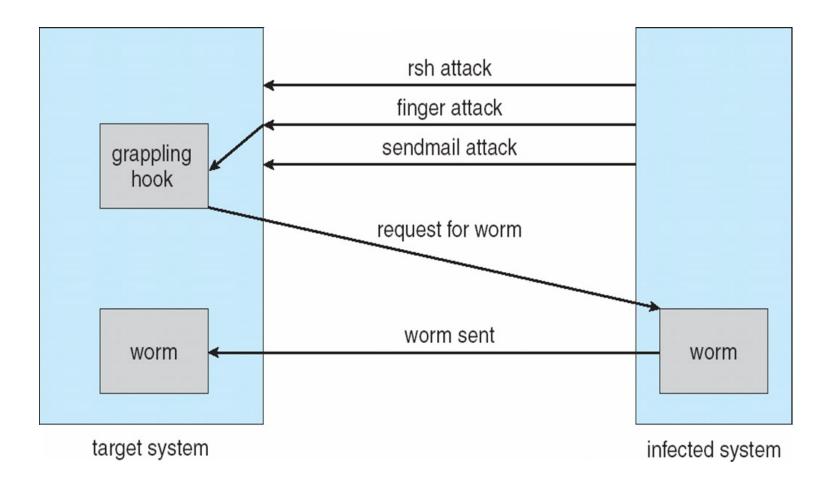
Worms – use spawn mechanism; standalone program

Internet worm

- Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
- Grappling hook program uploaded main worm program

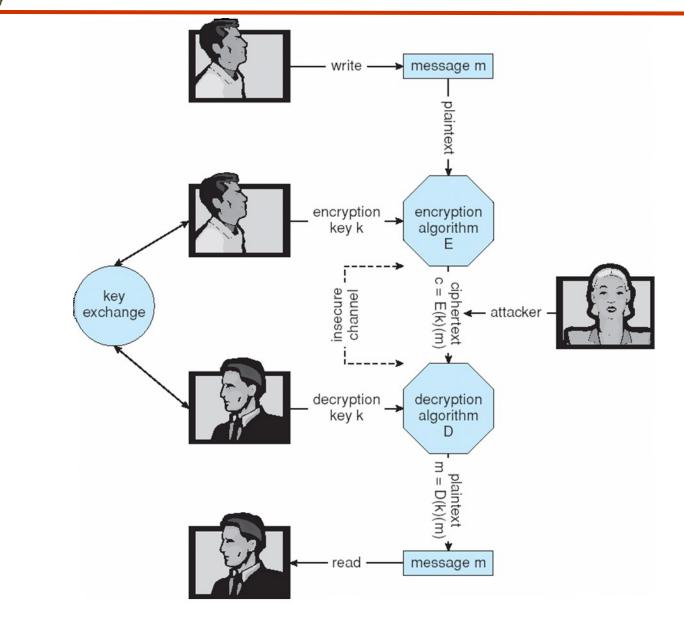
Port scanning

 Automated attempt to connect to a range of ports on one or a range of IP addresses


Denial of Service

- Overload the targeted computer preventing it from doing any useful work
- Distributed denial-of-service (DDOS) come from multiple sites at once

The Morris Internet Worm



Cryptography as a Security Tool

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (*sources*) and / or receivers (*destinations*) of *messages*
- Based on secrets (keys)

Secure Communication over Insecure Medium

Operating System Concepts with Java – 8th Edition

Silberschatz, Galvin and Gagne ©2009

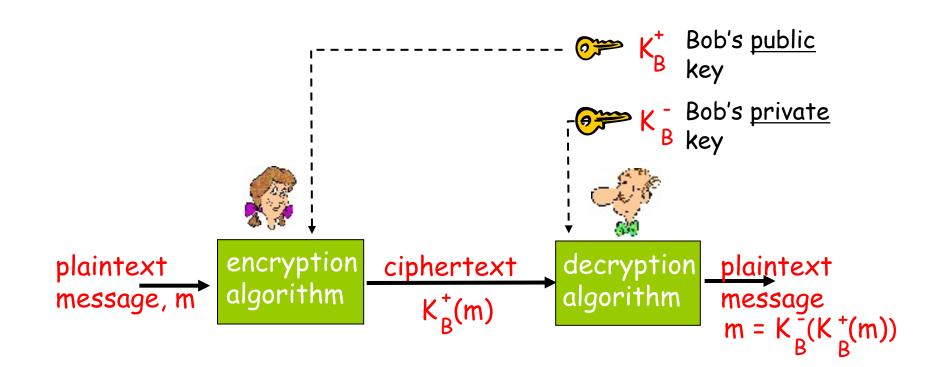
Encryption

- Encryption algorithm consists of
 - Set of *K* keys
 - Set of *M* Messages
 - Set of *C* ciphertexts (encrypted messages)
 - A function E : K → (M→C). That is, for each k ∈ K, E(k) is a function for generating ciphertexts from messages
 - Both *E* and E(k) for any *k* should be efficiently computable functions
 - A function D : K → (C → M). That is, for each k ∈ K, D(k) is a function for generating messages from ciphertexts
 - Both *D* and D(k) for any *k* should be efficiently computable functions
- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute *m* such that E(k)(m) = c only if it possesses D(k).
 - Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts

- Same key used to encrypt and decrypt
 - E(k) can be derived from D(k), and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time
- Triple-DES considered more secure
- Advanced Encryption Standard (AES), twofish up and coming
- RC4 is most common symmetric stream cipher, but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e wireless transmission)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite keystream

symmetric key crypto

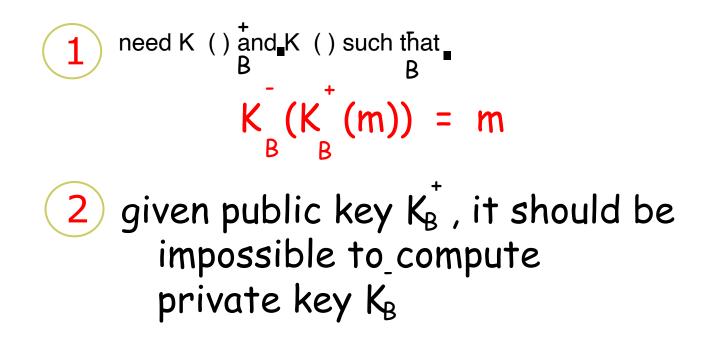
- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?


public key cryptography

- r radically different approach [Diffie-Hellman76, RSA78]
- r sender, receiver do *not* share secret key
- r *public* encryption key known to *all*
- r private decryption key known

8: Network Security

only to receiver



8: Network Security 8

Public key encryption algorithms

Requirements:

RSA: Rivest, Shamir, Adleman algorithm

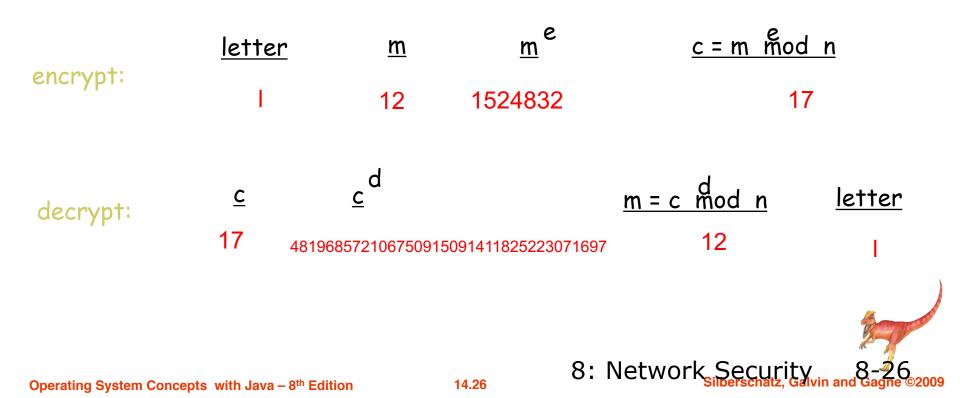
8: Network Security

- Choose two large prime numbers p, q. (e.g., 1024 bits each)
- 2. Compute n = pq, z = phi(n)=(p-1)(q-1)
- 3. Choose *e* (with *b<n*) that has no common factors with z. (*e*, *z* are "relatively prime").
- 4. Choose *d* such that *ed-1* is exactly divisible by *z*. (in other words: *ed* mod z = 1).
- 5. Public key is (n,e). Private key is (n,d).

- 0. Given (n,b) and (n,a) as computed above
- 1. To encrypt bit pattern, *m*, compute $x = m \mod n$ (i.e., remainder when *m* is divided by *n*)
- 2. To decrypt received bit pattern, c, compute $m = x \mod n$ (i.e., remainder when c is divided by n)

$$\begin{array}{ccc} Magic & m = (m \mod n) & d \mod n \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

Operating System Concepts with Java – 8th Edition


8: Network Secu

RSA example:

Bob chooses *p=5, q=7*. Then *n=35, z=24*.

e=5 (so *e, z* relatively prime). *d=29* (so *ed-1* exactly divisible by z.

Useful number theory result: If p,q prime and *n = pq,* then: $y \qquad y \mod (p-1)(q-1)$ $x \mod n = x \qquad \mod n$ $(m \mod n) \pmod{n = m \mod n}$ $= m \mod (p-1)(q-1)$ $= m \mod n$ (using number theory result above) $= m \mod n$ (since we chose ed to be divisible by (p-1)(q-1) with remainder 1) = m 8: Network Security **Operating System Concepts** with Java – 8th Edition 14.27

RSA: Why is that

RSA: another important property

The following property will be *very* useful later:

$$K_{B}(K_{B}^{\dagger}(m)) = m = K_{B}^{\dagger}(K_{B}^{\dagger}(m))$$

use public key first, followed by private key use private key first, followed by public key

8: Network Security

Result is the same!

Operating System Concepts with Java – 8th Edition

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption

- Constraining set of potential senders of a message
 - Complementary and sometimes redundant to encryption
 - Also can prove message unmodified

- For a message m, a computer can generate an authenticator a ∈ A such that V(k)(m, a) = true only if it possesses S(k)
- Thus, computer holding S(k) can generate authenticators on messages so that any other computer possessing V(k) can verify them
- Computer not holding S(k) cannot generate authenticators on messages that can be verified using V(k)
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive S(k) from the authenticators

- Basis of authentication
- Creates small, fixed-size block of data (message digest, hash value) from m
- Hash Function H must be collision resistant on m
 - Must be infeasible to find an $m' \neq m$ such that H(m) = H(m')
- If H(m) = H(m'), then m = m'
 - The message has not been modified
- Common message-digest functions include MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash

- Symmetric encryption used in message-authentication code (MAC) authentication algorithm
- Simple example:
 - MAC defines S(k)(m) = f(k, H(m))
 - Where *f* is a function that is one-way on its first argument
 - k cannot be derived from f(k, H(m))
 - Because of the collision resistance in the hash function, reasonably assured no other message could create the same MAC
 - A suitable verification algorithm is $V(k)(m, a) \equiv (f(k,m) = a)$
 - Note that k is needed to compute both S(k) and V(k), so anyone able to compute one can compute the other

Authentication – Digital Signature

- Based on asymmetric keys and digital signature algorithm
- Authenticators produced are digital signatures
- In a digital-signature algorithm, computationally infeasible to derive $S(k_s)$ from $V(k_v)$
 - *V* is a one-way function
 - Thus, k_v is the public key and k_s is the private key
- Consider the RSA digital-signature algorithm
 - Similar to the RSA encryption algorithm, but the key use is reversed
 - Digital signature of message $S(k_s)(m) = H(m)^{k_s} \mod N$
 - The key *k_s* again is a pair *d*, *N*, where *N* is the product of two large, randomly chosen prime numbers *p* and *q*
 - Verification algorithm is $V(k_v)(m, a) \equiv (a^{k_v} \mod N = H(m))$
 - Where k_v satisfies $k_v k_s \mod (p-1)(q-1) = 1$

- Why authentication if a subset of encryption?
 - Fewer computations (except for RSA digital signatures)
 - Authenticator usually shorter than message
 - Sometimes want authentication but not confidentiality

Signed patches et al

Can be basis for non-repudiation

- Delivery of symmetric key is huge challenge
 - Sometimes done out-of-band
- Asymmetric keys can proliferate stored on key ring
 - Even asymmetric key distribution needs care man-in-the-middle attack

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on

Encryption Example - SSL

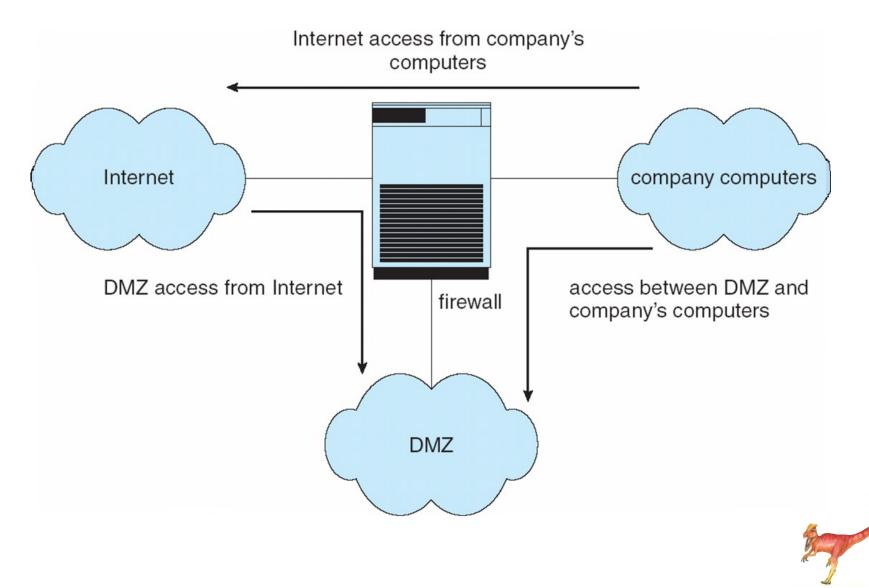
- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
 - Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a certificate assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure session key (symmetric encryption) for bulk of communication during session
- Communication between each computer the uses symmetric key cryptography

User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through *passwords*, can be considered a special case of either keys or capabilities
 - Also can include something user has and /or a user attribute
- Passwords must be kept secret
 - Frequent change of passwords
 - Use of "non-guessable" passwords
 - Log all invalid access attempts
- Passwords may also either be encrypted or allowed to be used only once

Implementing Security Defenses

- Defense in depth is most common security theory multiple layers of security
- Security policy describes what is being secured
- Vulnerability assessment compares real state of system / network compared to security policy
- Intrusion detection endeavors to detect attempted or successful intrusions
 - Signature-based detection spots known bad patterns
 - Anomaly detection spots differences from normal behavior
 - Can detect zero-day attacks
 - False-positives and false-negatives a problem
- Virus protection
- Auditing, accounting, and logging of all or specific system or network activities



Firewalling to Protect Systems and Networks

- A network firewall is placed <u>between trusted and untrusted hosts</u>
 - The firewall limits network access between these two security domains
- Can be tunneled or spoofed
 - Tunneling allows disallowed protocol to travel within allowed protocol (i.e. telnet inside of HTTP)
 - Firewall rules typically based on host name or IP address which can be spoofed
- Personal firewall is software layer on given host
 - Can monitor / limit traffic to and from the host
- Application proxy firewall understands application protocol and can control them (i.e. SMTP)
- System-call firewall monitors all important system calls and apply rules to them (i.e. this program can execute that system call)

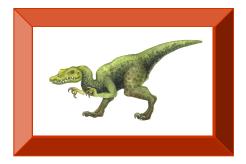
Network Security Through Domain Separation Via Firewall

Operating System Concepts with Java – 8th Edition

Silberschatz, Galvin and Gagne ©2009

Computer Security Classifications

- U.S. Department of Defense outlines four divisions of computer security: A, B, C, and D
- **D** Minimal security
- C Provides discretionary protection through auditing
 - Divided into C1 and C2
 - C1 identifies cooperating users with the same level of protection
 - C2 allows user-level access control
- B All the properties of C, however each object may have unique sensitivity labels
 - Divided into **B1**, **B2**, and **B3**
- A Uses formal design and verification techniques to ensure security



- Security is based on user accounts
 - Each user has unique security ID
 - Login to ID creates security access token
 - Includes security ID for user, for user's groups, and special privileges
 - Every process gets copy of token
 - > System checks token to determine if access allowed or denied
- Uses a subject model to ensure access security. A subject tracks and manages permissions for each program that a user runs
- Each object in Windows XP has a security attribute defined by a security descriptor
 - For example, a file has a security descriptor that indicates the access permissions for all users

End of Chapter 15

Operating System Concepts with Java – 8th Edition