
CPSC 2800 – Introduction to Operating System Simulation Lab Series

1 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

Simulation Lab 1: Process Scheduling Simulation Exercises on Feb. 22.

Submission to the bb4.utc.edu is due on midnight of Feb. 24.

Name your submission file with firstName_lastName_Simulation1.

Turn In:

Include your experiences and answers to Part I (question 1 to 12) and Part II (question 1 to 9).

Include the following at the beginning of your report.

 Name:

 UTC ID:

 Course Number and Name:

 Semester:

 Lab Name and Number:

 I spent hours and minutes to finish this hands-on lab.

 I have (percent) finish this lab.

 I expect (A, B, C, or F) of this lab.

 This lab helps me to understand process scheduling. Choose a number to indicate how

much the lab is helpful.

1 2 3 4 5

(less helpful) (more helpful)

Part I
Instructions: Download the Process Scheduling simulator and extract the zip file. This produces

a folder named ps. The user manual for this simulator, ps_doc.html, is included in the

folder. It is strongly suggested that you carefully read through this documentation describing

how the simulator operates prior to beginning this section.

Steps: Perform the following steps using the process scheduling simulator:

1. In the ps directory, execute runps(UNIX, Linux, Mac OS X) or runps.bat

(Windows.) This will start the process scheduling simulator.

2. Click on the green button labeled Run Experiment in the lower left-hand corner of the

Process Scheduling Simulator window. This will start the simulation which will complete

within one second. This simulation involves creating 30 processes using the SJF

(shortest-job-first) and FCFS (first-come-first-served) scheduling algorithms.

3. Terminate the simulator using the pink Quit button in the lower right-hand corner of the

main window.

CPSC 2800 – Introduction to Operating System Simulation Lab Series

2 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

4. In the ps directory you will find the file psconfig. This is the configuration file for the

process scheduling simulator. The fourth line in this configuration file begins with user.

Change its default value of Local User to your name.

5. Execute the simulator again (as in Step 1).

6. Click the Open Log button in the top row of the center column of the main window to

open a log file. After you have pushed this button, its name will change to Close Log.

7. Click the Run Experiment button again.

8. Click the Show All Table Data button at the right side of the main window. The Table

Data window showing a table of statistics appears.

9. Click the Log All Table Data button in the middle column of the main window. The

table of statistics is now sent to the log file.

10. Click the Draw Gantt Chart button at the right side of the main window. A pop-up

window appears to allow you to draw the Gantt Chart for either the SJF or the FCFS

scheduling algorithms. Choose the Gantt Chart for FCFS button and a Gantt chart

window appears illustrating the states of the 30 processes. Click the Log button in the

lower right-hand corner of the Gantt Chart for FCFS window to send the output of the

Gantt Chart to your log file.

11. Return to the main window and click the Draw Gantt Chart button again, this time

choose the Gantt Chart for SJF option. A Gantt chart illustrating the SJF algorithm of the

states of the 30 processes is shown again.

12. Return to the main window and click the Close Log button and then the Quit button. You

have created a file called logfile.html in the directory you started the simulator from.

13. Submit your log file -- logfile.html -- to your instructor per his or her instructions.

Questions:

Answer the following questions after completing Steps 1-13 above.

1. Examining the table generated in Step 8, what is the value of Key for myrun_1?

 a) FCFS

 b) SJF

2. Examining the table generated in Step 8, what is the CPU Utilization for myrun_2?

 a) .961584

 b) .961039

 c) .116711

 d) 10.07

CPSC 2800 – Introduction to Operating System Simulation Lab Series

3 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

3. Examining the table generated in Step 8, which run has greater Throughput value?

 a) myrun_1

 b) myrun_2

4. Which scheduling algorithm has the shorter average turnaround time?

a) FCFS

b) SJF

5. Which scheduling algorithm has the longer maximum turnaround time?

a) FCFS

b) SJF

6. Examining the Gantt chart for FCFS generated in Step 10, at approximately what time did

process 15 finish?

 a) 205

 b) 300

 c) 140

 d) 160

7. Examining the Gantt chart for SJF generated in Step 11, which process finished first?

 a) Process 1

 b) Process 15

 c) Process 16

 d) None of the above

8. Examining the Gantt chart for SJF generated in Step 11, which process finished last?

 a) Process 15

 b) Process 16

 c) Process 18

 d) None of the above

In the traditional UNIX scheduling algorithm the load average refers to the average number of

processes in the ready queue, and can be calculated by using the table generated in Step 8. The

load average is the total waiting time divided by the total time for the experiment. To determine

the total waiting time, multiply the average waiting time by the number of processes. The total

time for the experiment is the time the last processes finishes and is available in the table.

9. What is the load average for FCFS?

 a) 0.069

 b) 20.59

 c) 10.29

 d) 16.20

10. What is the load average for SJF?

CPSC 2800 – Introduction to Operating System Simulation Lab Series

4 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

 a) 26.84

 b) 0.34

 c) 10.07

 d) 20.59

The simulator does not take into account the context switch time required by the scheduling

algorithm. The context switch time can be taken into account as follows: The number of context

switches can be determined from the table generated in Step 8 under the heading Entries,

subheading CPU. Each time a context switch occurs, the context switch time must be added to

the waiting time of each process in the ready queue. The previous two questions required

calculating the load average for the FCFS and SJF scheduling algorithms. Assuming the context

switch time would add 10% to the average waiting time, the context switch time can be

determined as follows:

(a) Let the context switch time be S.

(b) If there are N context switches and the load average is L, the total waiting time due to context

switches is N × S × L.

(c) Set N × S × L equal to 10% of the total waiting time and solve for S.

11. What is the context switch time for FCFS?

 a) 0.286

 b) 529.23

 c) 1853.10

 d) 25.70

12. What is the context switch time for SJF?

 a) 258.69

 b) 30.21

 c) 0.5

 d) 0.285

Part II
Instructions: Download the Process Scheduling simulator and extract the zip file. This produces

a folder named ps. The user manual for this simulator, ps_doc.html, is included in the folder.

It is strongly suggested that you carefully read through this documentation describing how the

simulator operates prior to beginning this section. It is also recommended that you complete Part

I as well.

In the ps directory, there are two files: (1) myrun.run (the run file); and (2) myexp.exp

(the experiment file.) The run file specifies various parameters such as the number of processes,

interarrival times, process duration (how long it requires the CPU), and the length of CPU and

I/O bursts. The experiment file specifies the number of experiments that are to be run using the

run file. Each experiment in the experiment file runs the scheduler according to the parameters

http://edugen.wiley.com/edugen/courses/crs4557/simulations/OS_Simulator/student_questions/ps-exercieses.html#P1
http://edugen.wiley.com/edugen/courses/crs4557/simulations/OS_Simulator/student_questions/ps-exercieses.html#P1

CPSC 2800 – Introduction to Operating System Simulation Lab Series

5 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

specified in the run file. For example, if the experiment file myexp.exp contains the

following:

name myexp

comment This experiment contains 2 runs

run myrun algorithm FCFS key "FCFS"

run myrun algorithm SJF key "SJF"

this means the experiment specifies two runs will be performed, one using FCFS scheduling, the

other using SJF scheduling.

If the run file myrun.run contains:

name myrun

comment This run specifies one type of process

algorithm FCFS

seed 5000

numprocs 20

firstarrival 0.0

interarrival constant 0.0

duration constant 100

cpuburst constant 10

ioburst constant 10

basepriority 1.0

this means each experiment will run the scheduler with 20 processes, all arriving at time 0. The

duration of each process is 100, and the CPU and I/O bursts are both constant at 10.

The user manual for this simulator, ps_doc.html, fully explains the parameters for the

experiment and run files. It is strongly suggested that you read through this manual before

proceeding, as well as keep it open while performing the following exercises.

Steps: Perform the following steps using the process scheduling simulator:

1. Using a text editor, replace the contents of myexp.exp and myrun.run with the

experiment and run files shown above. (Both the myexp.exp and myrun.run files

are located in the ps directory.)

2. In the ps directory, execute runps(UNIX, Linux, Mac OS X) or runps.bat

(Windows.) This will start the process scheduling simulator.

3. Click the Run Experiment button and then click the Show All Table Data button. Next,

click the Draw Gantt Chart button, once for the FCFS, a second time for SJF.

CPSC 2800 – Introduction to Operating System Simulation Lab Series

6 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

<< Unless otherwise specified, set the value of myrun.run and myexp.exp back

to the default values that are shown above. >>

Questions:

Answer the following questions after completing Steps 1-3 above.

1. Examining the output from Step 3, you should be able to easily determine that the scheduling

behavior was no different between the FCFS and SJF algorithms. Explain why.

2. Click the Run Experiment button, and then create a Gantt chart for the FCFS, and a second

Gantt chart for the SJF. In both Gantt charts, the last process finishes at time 2000. Explain why.

3. Change the value of cpuburst in myrun.run from cpuburst constant 10 to

cpuburst uniform 10 25. This has the affect of assigning CPU bursts randomly with

values ranging from 10 to 25. Run the simulator with this changed parameter, and examine the

Gantt charts for the FCFS and SJF. Do the FCFS and SJF algorithms schedule processes the

same or differently?

4. In Section 5.3.1 of the text the convoy effect of FCFS scheduling is described. The following

values of myrun.run specify two types of processes:

name myrun

comment This run specifies two types of processes

algorithm FCFS

seed 5000

numprocs 5

firstarrival 0.0

interarrival constant 0.0

duration constant 50

cpuburst uniform 1 5

ioburst constant 10

basepriority 1.0

numprocs 1

firstarrival 0.0

interarrival constant 0.0

duration constant 50

cpuburst constant 25

ioburst uniform 1 5

basepriority 1.0

CPSC 2800 – Introduction to Operating System Simulation Lab Series

7 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

The first type of process specifies 5 processes with a uniform CPU burst uniformly distributed

between 1 and 5 and a constant I/O burst of 10. The second type of process is a single process

with a constant CPU burst of 25, and a uniform I/O burst distributed between 1 and 5. Thus,

there are 5 I/O-bound processes, and 1 CPU-bound process.

Change the value of myrun.run as shown above. Run the simulator with this changed

parameter, and examine the Gantt chart for the FCFS. What process(es) are part of the convoy

the second time process 6 gets the CPU?

 a) Processes 1 through 5

 b) Processes 1 through 6

 c) Processes 2 through 5

 d) There is no convoy effect in this situation.

Change the value of myexp.exp to the following:

name myexp

comment This experiment contains 5 runs

run myrun algorithm FCFS key "FCFS"

run myrun algorithm SJF key "SJF"

run myrun algorithm RR 1 key "RR 1"

run myrun algorithm RR 5 key "RR 5"

run myrun algorithm RR 10 key "RR 10"

This specifies 5 different runs of the scheduler, FCFS and SJF are the first two. The next three

are round-robin (RR) with time quantums of 1, 5, and 10, respectively.

Change the value of myrun.run to the following:

name myrun

comment This contains one type of process

algorithm SJF

seed 5000

numprocs 20

firstarrival 0.0

interarrival constant 0.0

duration constant 50

cpuburst uniform 2 20

ioburst constant 10

basepriority 1.0

In this run file, there are 20 processes with a constant duration and I/O burst. The CPU burst will

uniformly range between 2 and 20.

CPSC 2800 – Introduction to Operating System Simulation Lab Series

8 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

Run the simulator with this changed parameter, and click the Show All Table Data button.

5. Which scheduling algorithm has most context switches?

 a) FCFS

 b) RR 1

 c) RR 5

 d) RR 10

6. Draw the Gantt chart for both the FCFS and SJF algorithms. Notice they look quite different.

Yet in the table, both FCFS and SJF have the same number of context switches (109). Explain

why.

Preemptive SJF (PSJF) scheduling is discussed in Section 5.3.2 of the text. PSJF is the situation

whereby, if a newly arrived process has a shorter next CPU burst than the currently executing

processes, the newly arriving process will preempt the process currently running. (SJF

scheduling has no such preemption.) Add the following line to myexp.exp:

run myrun algorithm PSJF key "PSJF"

which adds an experimental run using PSJF scheduling. Run the simulator again, and examine

the Table Data.

7. What can be said about the relationship between the number of context switches for the SJF

and PSJF scheduling algorithms?

 a) They both have exactly the same number of context switches.

 b) They both have approximately the same number of context switches.

 c) SJF has more context switches.

 d) PSJF has more context switches.

8. For the 3 RR scheduling runs, what can be said about average waiting time with an increasing

time quantum?

 a) Average waiting time increases with an increasing time quantum.

 b) Average waiting time decreases with an increasing time quantum.

 c) There is no correspondence between average waiting time and the length of the time

quantum.

Section 5.3.4 of the text states that the performance of round-robin scheduling is heavily

dependent upon the length of the time quantum. If the time quantum is large, the RR scheduling

policy is the same as FCFS policy.

9. Assuming myrun.run stays the same as shown above, which of the following lines need

to be added to the myexp.exp file for this to be true? (If necessary, modify myrun.run

CPSC 2800 – Introduction to Operating System Simulation Lab Series

9 This document was derived from simulation software created by Steve Robbins which

was supported by NSF DUE-9752165

with each answer choice to test for the correct answer.)

 a) run myrun algorithm RR 25 key "RR 25"

 b) run myrun algorithm RR 15 key "RR 15"

 c) run myrun algorithm RR 8 key "RR 8"

 d) None of the above lines will cause RR scheduling to behave the same as FCFS.

