

• Using	arrays.
• Singly	Linked	Lists.
• Doubly	Linked	Lists.
• Circularly	Linked	Lists	and	Linked-List	Sorting.
• Recursion.

2
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

3

• A	data	type	is	a	well-defined	collection	of	data	with	a	well-
defined	set	of	operations	on	it.	(Abstract)

• A	data	structure	is	an	actual	implementation	of	a	particular	
abstract	data	type.	

• Abstract	data	types	add	clarity	by	separating	the	definitions	from	
the	implementations.	

• Example:	The	abstract	data	type	Set	has	operations	such	as:
EmptySet(S),	Insert(x,S),	Delete(x,S),	etc.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

• Java	is	strongly-typed,	which	means	that	all	variables	must	first	
be	declared	before	they	can	be	used.	

• A	collection	of	values	along	with	a	set	of	operations	that	can	be	
performed	on	those	values.	(the	definition	of	a	class).

• Java	has	a	large	library	of	classes	that	have	been	written	for	us	to	
use.

• This	includes	many	data	structures.

• The	classes	we	write	when	we	program	can	be	considered	user	
defined	types.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 4

5

• It	can	be	said	that	an	interface for	a	class	is	actually	the	data	
type.

• If	we	are	to	make	this	distinction,	then	the	class	can	be	
thought	of	as	the	implementation	of	the	data	type.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

6

• A	primitive	type	is	predefined	by	the	language	and	is	named	by	
a	reserved	keyword.	Primitive	values	do	not	share	state	with	
other	primitive	values.	

• These	are	the	exception	to	the	Object/Class	rule	we	discussed;	
they	are	not	objects	created	from	a	class.

• Primitives	are	stored	on	the	Stack	where	they	can	be	referenced	
by	the	Stack	Pointer	in	the	CPU’s	register.	This	is	very	efficient.

• Objects	are	created	on	the	Heap	in	the	computer’s	memory	with	
the	new keyword.	Then,	we	use	a	reference	to	access	the	Object.
• For	a	small,	simple	variable	this	is	not	very	efficient.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

7

• The	eight	primitive	data	types	supported	by	the	Java	programming	
language	are:	

• boolean (True	or	False)
• char (16	bit,	Unicode	0	to	Unicode	216 - 1)
• byte (8	bit,	-128	to	128)
• short (16	bit,	-215 to	215 - 1)
• int (32	bit,	-231 to	231 - 1)
• long (64	bit,	-263 to	263 - 1)
• float (IEEE-754)
• double (IEEE-754)

• void

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

8

• Data	Structures	are	a	‘composite’	data	type.
• This	means	they	can	be	decomposed.

• Into	other	composite	types.
• Finally,	into	a	data	type.

• Data	structures	are	collections	of	elements.
• The	most	well	known	is	the	array.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

9

• Linear	Data	Structures.
• Hierarchical	Data	Structures.
• Graph	Data	Structures.
• Sets.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

10

• A	data	structure	is	said	to	be	linear if	its	elements	form	a
sequence	or	a	linear	list.
• Arrays
• Linked	Lists
• Stacks,	Queues

• A	one:one relationship	between	elements	in	the	collection.
• Assuming	the	structure	is	not	empty,	there	is	a	first	and	a	last	
element.

• Every	element	except	the	first has	a	unique	predecessor.
• Every	element	except	the	last has	a	unique	successor.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

11
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

12

• Hierarchical	Data	Structures
• A	one:many relationship	between	elements	in	the	
collection.
• Assuming	the	structure	is	not	empty,	there	is	a	unique	
element	called	the	root.
• There	may	be	zero	to	many terminating	nodes	called	
leaves.
• Nodes	that	are	neither	roots	nor	leaves are	called	
internal.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

13
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

14

• Every	element	except	the	root	has	a	unique	predecessor.

• Every	element	except	a	leaf	has	a	one	or	more	successors.

• An	internal node	has	exactly	one	predecessor and	one	or	more	
successors.

• There	is	more	than	one	way	to	traverse	a	hierarchical	data	
structure.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

15

• Generally	called	trees,	they	are	very	important	and	widely	
used.

• A	few	types	are;	Generalized	Trees,	Binary	Trees,	Binary	
Search	Trees,	AVL	Trees	(balanced	binary	search	trees),	
Splay	Trees,	B	Trees,	&	P	Trees.

• Similar	to	linear	data	types,	the	basic	structure	is	the	same.	
Each	version	has	different	rules	and	operations.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

16

• A	many:many relationship	between	elements	in	the	collection.

• An	element	(E)	in	graph	can	be	connected arbitrarily	to	any	
other	element	in	the	graph,	(including	itself).

• Conversely,	any	number	of	elements	can	be	connected	to	E.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

17
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

18

• Traversal	through	a	liner	data	structure	is	called	iteration.
• The	basic	structures	are	the	same.
• The	operations	and	restrictions	are	different.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

• Traversal:	Travel	through	the	data	structure.

• Search:	Traversal	through	the	data	structure	for	a	given	element.

• Insertion:	Adding	new	elements	to	the	data	structure.

• Deletion:	Removing	an	element	from	the	data	structure.

• Sorting:	Arranging	the	elements	in	some	type	of	order.

• Merging:	Combining	two	similar	data	structures	into	one.
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 19

20

• Fixed-size data	collection.	

• All	of	the	elements	of	an	array	are	of	the	same	data-type
(either	primitives	or	objects).

• Its	elements	have	indexes ranging	from	0 to	n-1
n	is	<Array name>.length

• In	Java,	Arrays	are	objects.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

21

• All	Java	arrays	are	technically	one-dimensional.	

• Two-dimensional	arrays	are	arrays	of	arrays.	

• Declaring	an	array	does	not create	an	array	object	or	
allocate	space	in	memory;	it	creates	a	variable	with	a	
reference	to	an	array.

• Array	variable	declarations	must	indicate	a	dimension	by	
using	[]	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

22

• One	of	the	principal	reasons	why	arrays	are	used	so	widely	is	
that their	elements	can	be	accessed	in	constant	time	O(1).

• It	takes	the	same	time	to	access	a[1] or	a[10].

• The	address	of	a[x] can	be	determined	arithmetically	by	
adding	a	suitable	offset	to	the	machine	address	of	the	head	
of	the	array.

• The	elements	of	the	array	are	stored	in	a	contiguous block	of	
memory.	This	has	advantages	and	disadvantages !?

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

24

• Array	declaration	has	two	components:	array's	type and	the	
array's	name.	

Syntax: ArrayType[] arrayName;

int[] anArray;//declares an array of integers

• type is	the	data	type	of	the	contained	elements.	

• The	size	of	the	array	is	not	part	of	its	type	.

String[5] s; // illegal declaration
String[] s; // one-dimensional array
String[][] s; // two-dimensional array

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

25

• To	construct	an	array	we	use	the	new keyword
class-name[] array-name =

new class-name[capacity];

or
primitive-type[] array-name =

new primitive-type[capacity];

• primitive-type and	class-name specify	the	type	of	element	stored	
in	the	array.	

• array-name is	any	valid	Java	identifier	that	refers	to	all	elements	
in	the	array.

• Capacity	(size) is	an	integer	expression	representing	the	
maximum	number	of	elements	that	can	be	stored	into	the	array.	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

26

int[] anArray; // declares an array of integers

myIntArray = new int[10]; //construct the array
myHamburgerArray = new Hamburger[13];

• Since	arrays	are	allocated	at	runtime,	we	can	use	a	variable	to	
set	their	dimension	
int arrSize = 100;
String[] myArray = new String[arrSize];

or
• both	declare	and	construct
String[] myStringArray = new String[5];

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

27

• Several	ways	– here’s	one	that	declares,	creates	and	
initializes	all	in	one:

String[] fears = {“spiders”, “heights”,

“bridges”, “flying”};

char[] grades = { 'A', 'B', 'C', 'D', 'E' };

Note: (1)	curly	brackets
(2)	comma-separated	list

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

28

// declare and initialize

int[] courseMarks = new int[8];
// populate

courseMarks[0] = 89;
courseMarks[1] = 56;

courseMarks[2] = 24;

…

• values	for	rest	is	0
• for	objects[]	the	value	will	be	null

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

29

• Individual	array	elements	are	referenced	through	
subscripts	of	this	form:

array-name [int-expression]

• int-expression is	an	integer	that	should	be	in	the	range	of	
0..Size-1.

MyArray[n] refers	to	the	element	of	the	array	n (starting	
from	0)

<array name>.length

length is	a	built-in	property	to	determine	the	size	of	any	
array	
• First	element	is	myArray[0]	
• Last	element	is	myArray[length.myArray-1]CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

30

• If	you	attempt	to	access	an	array	element	beyond	the	
largest	index,	a	run	time	error	will	occur	and	the	program	
will	terminate	is	the	error	is	not	handled.

Subscripts	can	get	"out	of	range"

String[] name = new String[1000];
name[-1] = "Subscript too low";
name[0] = "This should be the first name";
name[999] = "This is the last good subscript";
name[1000] = "Subscript too high";

Two	of	the	above	references	will	cause	ArrayIndexOutOfBounds
exceptions.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

GameEntry.java

Scores.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 32

Chapter%2003%20-%20Code/GameEntry.java
Chapter%2003%20-%20Code/Scores.java

add(e): Insert game entry e into the collection of high scores.
If the collection is full, then e is added only if its score
is higher than the lowest score in the set, and in this
case, e replaces the entry with the lowest score.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 33

remove(i): Remove and return the game entry e at index i in the
entries array. If index i is outside the bounds of the
entries array, then this method throws an exception;
otherwise, the entries array will be updated to remove
the object at index i and all objects previously stored at
indices higher than i are “moved over” to fill in for the
removed object.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 34

Algorithm InsertionSort(A):
Input:	 An	array	A	of	n	comparable	elements
Output:	The	array	A	with	elements	rearranged	in	non-

decreasing	order
for i ←	1	to	n−1	do

Insert	A[i]	at	its	proper	location	in	A[0],A[1],...,A[i−1].

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 35

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 36

Algorithm InsertionSort(A):
Input:	 An	array	A	of	n	comparable	elements
Output:	The	array	A	with	elements	rearranged	in	

nondecreasing order
for i ←	1	to	n−1	do

{Insert	A[i]	at	its	proper	location	in	A[0],A[1],...,A[i−1]}
cur	←	A[i]
j	←	i−1
while	j	≥	0	and	a[j]	>	cur	do

A[j+1]	←	A[j]
j	←	j−1

A[j+1]	←	cur	{cur	is	now	in	the	right	place}
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 37

/** Insertion sort of an array of characters into non-decreasing
order */
public static void insertionSort(char[] a)
{

int n = a.length;
for (int i = 1; i < n; i++)
{

// index from the second character in a
char cur = a[i]; // the current character to be inserted
int j = i − 1;

// start comparing with cell left of I
// while a[j] is out of order with cur
while ((j >= 0) && (a[j] > cur))

a[j + 1] = a[j−−]; // move a[j] right and decrement j

a[j + 1]=cur; // this is the proper place for cur
}

}
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 38

equals(A,B): Returns true if and only if the array A and the
array B are equal. Two arrays are considered
equal if they have the same number of elements
and every corresponding pair of elements in the
two arrays are equal. That is, A and B have the
same elements in the same order.

fill(A,x): Stores element x into every cell of array A, provided
the type of array A is defined so that it is allowed to
store the value x.

http://docs.oracle.com/javase/7/docs/api/java/util/Arrays html

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 39

http://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

copyOf(A,n): Returns an array of size n such that the first k
elements of this array are copied from A, where
k =min{n, A.length}. If n > A.length, then the
last n− A.length elements in this array will be
padded with default values, e.g., 0 for an array
of int and null for an array of objects.

copyOfRange(A,s,t): Returns an array of size t − s such that
the elements of this array are copied in
order from A[s] to A[t−1], where s < t,
with padding as with copyOf() if t >
A.length.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 40

sort(A): Sorts the array A based on a natural ordering of its
elements, which must be comparable. This methods
uses the quick-sort algorithm discussed in Section
11.2.

toString(A): Returns a String representation of the array A,
which is a comma-separated list of the elements
of A, ordered as they appear in A, beginning
with [and ending with].
The string representation of an element A[i] is
obtained using String.valueOf(A[i]), which
returns the string “null” for a null object and
otherwise calls A[i].toString().

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 41

nextBoolean(): Returns	the	next	pseudo-random	boolean value.

nextFloat():	Returns	the	next	pseudo-random	float	value,	between	
0.0	and	1.0.

nextInt():	Returns	the	next	pseudo-random	int value.

nextInt(n):	Returns	the	next	pseudo-random	int value	in	the	range	
[0,n).

setSeed(s):	Sets	the	seed	of	this	pseudo-random	number	generator	
to	the	long	s.

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 42

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

ArrayTest.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 43

Chapter%2003%20-%20Code/ArrayTest.java

• Java	makes	it	easy	for	us	to	create	string	objects	from	
character	arrays	and	vice	versa.		

• To	create	an	object	of	class	String	from	a	character	array	A,	
we	simply	use	the	expression,	new	String(A)

• For	example,	the	string	we	would	construct	from	the	array	
A =	[a,c,a,t] is	acat.	

• Given	a	string	S,	we	can	create	a	character	array	
representation	of	S	by	using	the	expression,	S.toCharArray()	

• For	example,	if	we	call	toCharArray on	the	string	adog,	we	
would	get	the	array	B =	[a,	d,	o,	g].

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 44

• The	Caesar	cipher	involves	replacing	each	letter	in	a	
message	with	the	letter	that	is	three letters	after	it	in	the	
alphabet	for	that	language.	So,	in	an	English	message,	we	
would	replace	each	A	with	D,	each	B	with	E,	each	C	with	F,	
and	so	on.		We	continue	this	approach	all	the	way	up	to	W,	
which	is	replaced	with	Z.	Then,	we	let	the	substitution	
pattern	wrap	around,	so	that	we	replace	X	with	A,	Y	with	B,	
and	Z	with	C.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 45

• If	we	were	to	number	our	letters	like	array	indices,	so	that	
A	is	0,	B	is	1,	C	is	2,	and	so	on,	then	we	can	write	the	Caesar	
cipher	as	a	simple	formula:

Replace	each	letter	i with	the	letter	(i+3)	mod	26

Caesar.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 46

Chapter%2003%20-%20Code/Caesar.java

• Many	computer	games,	be	they	strategy	games,	simulation	
games,	or	first-person	conflict	games,	use	a	two-
dimensional	“board.”	

• Programs	that	deal	with	such	positional games	need	a	way	
of	representing	objects	in	a	two-dimensional	space.	

• A	natural	way	to	do	this	is	with	a	two-dimensional	array,	
where	we	use	two	indices,	say	i and	j,	to	refer	to	the	cells	in	
the	array.	

• The	first	index	usually	refers	to	a	row number	and	the	
second	to	a	column number.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 47

• we	can	create	a	two-dimensional	array as	an	array	of	
arrays.	

• Such	a	two-dimensional	array	is	sometimes	also	called	a	
matrix.	

• In	Java,	we	declare	a	two-dimensional	array	as	follows:

int[][] Y = new int[8][10];

Y[i][i+1] = Y[i][i] + 3;

i = Y.length; // i is 8
j = Y[4].length; // j is 10

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 48

49

int[][] A = { { 1, 0, 12, -1 }, { 7, -3, 2, 5 }, { -5, -2, 2, 9 } };

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

• with	a	0 indicating	an	empty	cell,	a	1
indicating	an	X,	and	a	−1	indicating	O

TicTacToe.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 50

Chapter%2003%20-%20Code/TicTacToe.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 51

52

• A	singly	linked	list	is	a	
concrete	data	structure	
consisting	of	a	sequence	of	
nodes.

• Each	node	stores
• element.
• link	to	the	next	node.

Node.java

next

element node

A B C D

Æ

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

Chapter%2003%20-%20Code/Node.java

53

1. Allocate	a	new	node.
2. Insert	new	element.
3. Have	new	node	point	to	

old	head.
4. Update	head	to	point	to	

new	node.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

Algorithm addFirst(v):
v.setNext(head)		{make	v	point	to	the	old	head	node}
head	←	v		{make	variable	head	point	to	new	node}
size	←	size+1		{increment	the	node	count}

54

1. Allocate	a	new	node
2. Insert	new	element
3. Have	new	node	point	to	

null
4. Have	old	last	node	point	

to	new	node
5. Update	tail	to	point	to	

new	node

Algorithm	addLast(v):
v.setNext(null)		{make	new	node	v	point	to	null	object}
tail.setNext(v)		{make	old	tail	node	point	to	new	node}
tail	←	v		{make	variable	tail	point	to	new	node.}
size	←	size+1		{increment	the	node	count}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

55

1. Update	head	to	point	to	
next	node	in	the	list

2. Allow	garbage	collector	
to	reclaim	the	former	first	
node

Algorithm	removeFirst():
if	head	=	null	then

Indicate	an	error:	the	list	is	empty.
t	←	head
head	←	head.getNext()		{make	head	point	to	next	node	(or	null)}
t.setNext(null)		{null	out	the	next	pointer	of	the	removed	node}
size	←	size−1		{decrement	the	node	count}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

56

• Removing	at	the	tail	of	a	singly	linked	list	is	not	efficient!
• There	is	no	constant-time	way	to	update	the	tail	to	point	
to	the	previous	node.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 57

• A	doubly	linked	list	provides	a	natural	
implementation	of	the	Node	List	ADT

• Nodes	implement	Position	and	store:
• element
• link	to	the	previous	node
• link	to	the	next	node

• Special	trailer	and	header	nodes	(sentinel)	
DNode.java

prev next

elem

trailerheader nodes/positions

elements

node

Chapter%2003%20-%20Code/DNode.java

Algorithm addFirst(v):
w	←	header.getNext()		{first	node}
v.setNext(w)
v.setPrev(header)
w.setPrev(v)
header.setNext(v)
size	=	size+1

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 58

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 59

• We	visualize	operation	insertAfter(p,	X),	which	returns	position	q

A B X C

A B C

p

A B C

p

X

q

p q

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 60

Algorithm addAfter(p,e):
Create	a	new	node	v
v.setElement(e)
v.setPrev(p) {link	v	to	its	predecessor}
v.setNext(p.getNext()) {link	v	to	its	successor}
(p.getNext()).setPrev(v) {link	p’s	old	successor	to	v}
p.setNext(v) {link	p	to	its	new	successor,	v}
return	v {the	position	for	the	element	e}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 61

• We	visualize	remove(p),	where	p	=	last()

A B C D

p

A B C

D

p

A B C

Algorithm removeLast():
if	size	=	0	then
Indicate	an	error:	the	list	is	empty

v	←	trailer.getPrev()		{last	node}
u	←	v.getPrev()		{node	before	the	last	node}
trailer.setPrev(u)
u.setNext(trailer)
v.setPrev(null)
v.setNext(null)
size	=	size−1

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 62

Algorithm remove(v):
u	←	v.getPrev()		{node	before	v}
w	←	v.getNext()		{node	after	v}
w.setPrev(u)		{link	out	v}
u.setNext(w)
v.setPrev(null)		{null	out	the	fields	of	v}
v.setNext(null)
size	←	size−1		{decrement	the	node	count}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 63

Algorithm InsertionSort(L):
Input: A	doubly	linked	list	L	of	comparable	elements
Output: The	list	L	with	elements	rearranged	in	nondecreasing order
if L.size()	<=	1	then
return

end	←	L.getFirst()
while end	is	not	the	last	node	in	L	do
pivot	←	end.getNext()
Remove	pivot	from	L
ins	←	end
while ins	is	not	the	header	and	ins’s element	is	greater	than	pivot’s	do

ins	←	ins.getPrev()
Add	pivot	just	after	ins	in	L

if	 ins	=	end	then {We	just	added	pivot	after	end	in	this	case}
end	←	end.getNext()

DList.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 64

Chapter%2003%20-%20Code/DList.java

• A	circularly	linked	list	has	the	same	kind	of	nodes	as	a	
singly	linked	list.	

• There	is	no	head	or	tail	in	a	circularly	linked	list.		
• For	instead	of	having	the	last	node’s	next	pointer	be	null,	in	
a	circularly	linked	list,	it	points	back	to	the	first	node.		

• A	special	node,	which	we	call	the	cursor.
•Where	to	start	from.	
•When	we	are	done.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 65

• add(v):	Insert	a	new	node	v	immediately	after	the	cursor;	if
the	list	is	empty,	then	v	becomes	the	cursor	and	its	
next	pointer	points	to	itself.

• remove(): Remove	and	return	the	node	v	immediately	
after	the	cursor	(not	the	cursor	itself,	unless	it	
is	the	only	node);	if	the	list	becomes	empty,	the	
cursor	is	set	to	null.

• advance(): Advance	the	cursor	to	the	next	node	in	the	list.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 66

• repetition	can	be	achieved	by	writing	loops,	such	as	for
loops	and	while loops.

• Another	way	to	achieve	repetition	is	through	recursion,	
which	occurs	when	a	function	refers	to	itself	in	its	own	
definition.

• A	function	is	said	to	be	recursive if	it	calls	itself	either	
directly	or	indirectly through	another	function.

• A	recursive	function	knows	when	to	stop	calling	itself	once	
a	base	case	is	reached.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 67

• Recursion	is	a	common	form	of	the	general-purpose	problem-
solving	technique	called	“divide	and	conquer”.	

• The	principle	of	divide-and-conquer	is	that,	you	solve	a	given	
problem	P in	3 steps:	
1. Divide	P into	several	sub-problems,	P1,P2,...,	Pn.	
2. Solve,	however	you	can,	each	of	the	sub-problems	to	get	

solutions	S1,	S2,	...,	 Sn.	
3. Use	S1,	S2,	...,	 Sn to	construct	a	solution	to	the	original	

problem	P.	

• This	is	often	recursive,	because	in	order	to	solve	one	or	more	of	the	
sub-problems,	you	might	use	this	very	same	strategy.	

• For	instance,	you	might	solve	P1 by	sub-dividing	it	into	P1a,P1b...,	
solving	each	one	of	them,	and	putting	together	their	solutions	S1a,	
S1b,	,,,	 to	get	the	solution	S1 to	problem	P1.	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 68

• The	factorial	of	a	positive	integer	n,	denoted	n!,	is	defined	
as	the	product	of	the	integers	from	1 to	n.

factorial(5) = 5·(4·3·2·1) = 5·factorial(4)

• recursive	definition:

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 69

public static int recursiveFactorial(int n)

{

// recursive factorial function
if (n == 0)

return 1; // basis case
else

return n * recursiveFactorial(n−1); // recursive case
}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 70

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 71

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 72

Algorithm LinearSum(A,	n):
Input:	 A	integer	array	A	and	an	integer	n	=	1,	such	that	A	has	at	least	n	
elements

Output:	The	sum	of	the	first	n	integers	in	A
if	n	=	1	then
return	A[0]
else
return	LinearSum(A,	n	- 1)	+	A[n	- 1]

recursion	trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

• For	an	input	array	of	size	n,	Algorithm	LinearSummakes	n
calls.		

• Hence,	it	will	take	an	amount	of	time that	is	roughly	
proportional	to	n,	since	it	spends	a	constant	amount	of	time	
performing	the	non-recursive	part	of	each	call.	

• Moreover,	we	can	also	see	that	the	memory	space used	by	
the	algorithm	(in	addition	to	the	array	A)	is	also	roughly	
proportional	to	n,	since	we	need	a	constant	amount	of	
memory	space	for	each	of	the	n boxes	in	the	trace	at	the	
time	we	make	the	final	recursive	call	(for	n	=	1)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 73

• Test	for	base	cases
• Begin	by	testing	for	a	set	of	base	cases	(there	should	be	at	
least	one).	
• Every	possible	chain	of	recursive	calls	must eventually	reach	a	
base	case,	and	the	handling	of	each	base	case	should	not	use	
recursion.

• Recur	once
• Perform	a	single	recursive	call.
• This	step	may	have	a	test	that	decides	which	of	several	
possible	recursive	calls	to	make,	but	it	should	ultimately	make	
just	one	of	these	calls.
• Define	each	possible	recursive	call	so	that	it	makes	progress	
towards	a	base	case.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 74

Algorithm ReverseArray(A,	i,		j):
Input:	An	array	A	and	nonnegative	integer	indices	i and		j
Output: The	reversal	of	the	elements	in	A	starting	at	index	

i and	ending	at		j
if	i <		j	then

Swap	A[i]	and	A[j]
ReverseArray(A,	i +	1,		j	- 1)

return

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 75

• In	creating	recursive	methods,	it	is	important	to	define	the	
methods	in	ways	that	facilitate	recursion.

• This	sometimes	requires	we	define	additional	paramaters
that	are	passed	to	the	method.

• For	example,	we	defined	the	array	reversal	method	as	
ReverseArray(A,	i,		j),	not	ReverseArray(A).

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 76

• Tail	recursion	occurs	when	a	linearly	recursive	method	
makes	its	recursive	call	as	its	last	step.

• The	array	reversal	method	is	an	example.

• Methods	can	be	easily	converted	to	non-recursive	methods	
(which	saves	on	some	resources).

• Example:
Algorithm IterativeReverseArray(A,	i,	j):
Input:	An	array	A	and	nonnegative	integer	indices	i and	j
Output:	The	reversal	of	the	elements	in	A	starting	at	index	i and	

ending	at	j
while	i <		j	do
Swap	A[i]	and	A[j]
i =	i +	1
j		=	j	- 1

return
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 77

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 78

• So	which	way	is	better?	– iteration	or	recursion?

• Answer	is	that	it	depends	on	what	you	are	trying	to	do.

• Usually,	a	recursive	approach	more	naturally	mirrors	the	problem	at	
hand.	So,	a	recursive	approach	makes	it	simpler	to	tackle	a	problem	
which	may	not	have	the	most	obvious	of	answers.

• However,	recursion	carries	an	overhead	that	for	each	recursive	call	
needs	space	on	the	stack	frame.

• This	extra	memory	need	can	be	quite	processor	intensive	and	consume	
a	lot	of	memory	if	recursion	is	nested	deeply.

• Iteration	does	not	have	this	overhead	as	it	occurs	within	the	method	so	
the	overhead	of	repeated	method	calls	and	extra	memory	is	omitted.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 79

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 80

• Terminates	when	a	condition	is	
proven	to	be	false.

• Each	iteration	does	not	require	
any	extra	space	as	it	resides	in	
the	same	method.

• An	infinite	loop	could	
potentially	loop	forever	since	
there	is	no	extra	memory	being	
created.

• Iterative	solutions	to	a	problem	
may	not	always	be	as	obvious	as	
a	recursive	solution.

Recursion

• Terminates	when	a	base	case	is	
reached.

• Each	recursive	call	requires	
extra	space	on	the	stack	frame	
(i.e.	memory).

• If	we	get	infinite	recursion,	we	
will	eventually	run	out	of	
memory,	resulting	in	a	stack	
overflow.

• Solutions	to	some	problems	are	
easier	to	formulate	recursively.

Iteration

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 81

