

• The	Seven	Functions.
• Analysis	of	Algorithms.
• Simple	Justification	Techniques.

2
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 2010 Goodrich, Tamassia

2010 Goodrich, Tamassia

• To	analyze	an	algorithm is	to	determine	the	amount	of	
resources	(such	as	time	and	storage)	necessary	to	execute	it.

• Most	algorithms	are	designed	to	work	with	inputs	of	
arbitrary	length.

• Usually	the	efficiency or	complexity of	an	algorithm	is	
stated	as	a	function	relating	the	input	length	to	the	number	of	
steps	(time	complexity)	or	storage	locations.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 3

2010 Goodrich, Tamassia

• The	performance	of	a	computer	is	determined	by:

• The	hardware:	
• processor	used	(type	and	speed).	
• memory	available	(cache	and	RAM).	
• disk	available.

• The	programming	language	in	which	the	algorithm	is	specified.
• The	language	compiler/interpreter	used.	
• The	computer	operating	system	software.	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 4

2010 Goodrich, Tamassia

• The	amount	of	computer	memory and	time needed	to	run	a		
program.

• Space	complexity
• Why?
• Because	We	need	to	know	the	amount	of	memory	to	be	
allocated	to	the	program.

• Time	complexity
• Why?
• Because	We	need	upper	limit	on	the	amount	of	time	needed	
by	the	program.	(Real-Time	systems)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 5

2010 Goodrich, Tamassia

• Space	Complexity
• Instruction	space	(size	of	the	compiled	version)
• Data	space	(constants,	variables,	arrays,	etc.)
• Environment	stack	space	(context	switching)

• Time	Complexity
• All	the	factors	that	space	complexity	depends	on.
• Compilation	time	
• Execution	time
• Operation	counts	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 6

2010 Goodrich, Tamassia

• An	algorithm	is	“a	step-by-step	procedure	for	accomplishing	
some	end.'‘		(solve	a	problem,	complete	a	task,	etc.)

• An	algorithm	can	be	given	or	expressed	in	many	ways.
• For	example,	it	can	be	written	down	in	English	(or	French,	or	any	
other	“natural''	language).	

• We	seek	algorithms	which	are	correct and	efficient.	
• Correctness
• For	any	algorithm,	we	must	prove	that	it	always returns	the	
desired	output	for	all	legal	instances	of	the	problem.	

• Efficiency:	Minimum	time	and	minimum	resources.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 7

2010 Goodrich, Tamassia

• determine	the	running	time	of	a	program	as	a	function	of	its	
inputs.

• determine	the	total	or	maximum	memory	space	needed	for	
program	data.

• determine	the	total	size	of	the	program	code.
• determine	whether	the	program	correctly	computes	the	desired	
result.

• determine	the	complexity	of	the	program- e.g.,	how	easy	is	it	to	
read,	understand,	and	modify.

• determine	the	robustness	of	the	program- e.g.,	how	well	does	it	
deal	with	unexpected	or	erroneous	inputs?	

• etc.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 8

2010 Goodrich, Tamassia

• Seven	functions	that	often	appear	in	algorithm	analysis:
• Constant	» 1
• Logarithmic	» log	n
• Linear	» n
• N-Log-N	» n log	n
• Quadratic	» n2

• Cubic	» n3

• Exponential	» 2n

9
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

2010 Goodrich, Tamassia

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 10

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 112010 Goodrich, Tamassia

2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 12

2010 Goodrich, Tamassia

• properties	of	logarithms:
logb(xy)	=	logbx +	logby
logb (x/y)	=	logbx - logby
logbxa =	alogbx
logba =	logxa/logxb

• properties	of	exponentials:
a(b+c) =	aba	c
abc =	(ab)c
ab /ac =	a(b-c)
b	=	a	logab
bc =	a	c*logab

• Summations
• Logarithms and Exponents

• Proof techniques
• Basic probability

13
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

2010 Goodrich, Tamassia

• Write	a	program	implementing	
the	algorithm.

• Run	the	program	with	inputs	of	
varying	size	and	composition.

• Use	a	method	like	
System.currentTimeMillis()	
to	get	an	accurate	measure	of	
the	actual	running	time.

• Plot	the	results.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

14
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

2010 Goodrich, Tamassia

1. It	is	necessary	to	implement	the	algorithm,	which	may	be	
difficult.

2. Results	may	not	be	indicative	of	the	running	time	on	other	
inputs	not	included	in	the	experiment.	

3. In	order	to	compare	two	algorithms,	the	same	hardware	and	
software	environments	must	be	used.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 15

2010 Goodrich, Tamassia

• Uses	a	high-level	description	of	the	algorithm	instead	of	an	
implementation.

• Characterizes	running	time	as	a	function	of	the	input	size,	n.

• Takes	into	account	all	possible	inputs.

• Allows	us	to	evaluate	the	speed	of	an	algorithm	independent	
of	the	hardware/software	environment.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 16

2010 Goodrich, Tamassia

• High-level	description	of	an	
algorithm.

• More	structured	than	
English	prose.

• Less	detailed	than	a	
program.

• Preferred	notation	for	
describing	algorithms.

• Hides	program	design	
issues.

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ¬ A[0]
for i ¬ 1 to n - 1 do
if A[i] > currentMax then

currentMax ¬ A[i]
return currentMax

Example: find max
element of an array

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 17

2010 Goodrich, Tamassia

• Control	flow
• if… then… [else…]
• while… do…
• repeat… until…
• for… do…
• Indentation	replaces	braces	

• Method	declaration
Algorithm	method (arg [,	arg…])
Input…
Output…

• Method	call
var.method (arg [,	arg…])

• Return	value
return expression

• Expressions
¬ Assignment	(like	= in	Java)
= Equality	testing	(like	== in	Java)
n2		Superscripts	and	other	
mathematical	formatting	
allowed

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 18

2010 Goodrich, Tamassia

• Basic	computations	performed	
by	an	algorithm.

• Identifiable	in	pseudocode.
• Largely	independent	from	the	
programming	language.

• Exact	definition	not	important.
• Assumed	to	take	a	constant	
amount	of	time	in	the	RAM	
model.

• Examples:
• Evaluating	an	expression.
• Assigning	a	value	to	a	
variable.
• Indexing	into	an	array.
• Calling	a	method.
• Returning	from	a	method.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 19

2010 Goodrich, Tamassia

• Most	algorithms	transform	input	
objects	into	output	objects.

• The	running	time	of	an	algorithm	
typically	grows	with	the	input	
size.

• Average	case	time	is	often	
difficult	to	determine.

• We	focus	on	the	worst	case	
running	time.
• Easier	to	analyze.
• Crucial	to	applications	such	as	
games,	finance	and	robotics.

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e
1000 2000 3000 4000

Input Size

best case
average case
worst case

20
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

2010 Goodrich, Tamassia

• Given	functions	f(n) and	
g(n),	we	say	that	f(n) is	
O(g(n)) if	there	are	
positive	constants
c and	n0 such	that

f(n) £ cg(n) for	n ³ n0

• Example:	2n + 10 is	O(n)
• 2n + 10 £ cn
• (c - 2) n ³ 10
• n ³ 10/(c - 2)
• Pick	c = 3 and	n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 21

2010 Goodrich, Tamassia

• Example:	the	function	
n2 is	not	O(n)
• n2 £ cn
• n	£ c
• The	above	inequality	
cannot	be	satisfied	since	c
must	be	a	constant.

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2
100n
10n
n

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 22

2010 Goodrich, Tamassia

• By	inspecting	the	pseudocode,	we	can	determine	the	
maximum	number	of	primitive	operations	executed	by	an	
algorithm,	as	a	function	of	the	input	size

Algorithm arrayMax(A, n) #	operations
currentMax ¬ A[0] 2
for i ¬ 1 to n - 1 do 2n

if A[i] > currentMax then 2(n - 1)
currentMax ¬ A[i] 2(n - 1)

{ increment counter i } 2(n - 1)
return currentMax 1

Total 8n - 2

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 23

2010 Goodrich, Tamassia

• Algorithm	arrayMax executes	8n - 2 primitive	
operations	in	the	worst	case.		Define:
a=	Time	taken	by	the	fastest	primitive	operation
b =	Time	taken	by	the	slowest	primitive	operation

• Let	T(n) be	worst-case	time	of	arrayMax. Then
a (8n - 2) £ T(n) £ b(8n - 2)

• Hence,	the	running	time	T(n) is	bounded	by	two	
linear	functions.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 24

2010 Goodrich, Tamassia

• If		f(n) a	polynomial	of	degree	d,	then	f(n) is	
O(nd),	i.e.,

1.Drop	lower-order	terms.
2.Drop	constant	factors.

• Use	the	smallest	possible	class	of	functions
• Say	“2n is	O(n)” instead	of	“2n is	O(n2)”

• Use	the	simplest	expression	of	the	class
• Say	“3n + 5 is	O(n)” instead	of	“3n + 5 is	O(3n)”

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 25

2010 Goodrich, Tamassia

7n-2
7n-2	is	O(n)
need	c	>	0	and	n0 ³ 1	such	that 7n-2	£ c•n for	n	³ n0
this	is	true	for	c	=	7	and	n0 =	1

3n3 +	20n2 +	5
3n3 +	20n2 +	5	is	O(n3)
need	c	>	0	and	n0 ³ 1	such	that 3n3 +	20n2 +	5	£ c•n3 for	n	³ n0
this	is	true	for	c	=	4	and	n0 =	21

3	log	n	+	5
3	log	n	+	5	is	O(log	n)
need	c	>	0	and	n0 ³ 1	such	that 3	log	n	+	5	£ c•log	n	for	n	³ n0
this	is	true	for	c	=	8	and	n0 =	2

CPSC	3200	
University	of	Tennessee	at	Chattanooga	– Summer	2013 26

2010 Goodrich, Tamassia

• The	asymptotic	analysis	of	an	algorithm	determines	the	running	
time	in	big-Oh	notation.

• To	perform	the	asymptotic	analysis
• We	find	the	worst-case	number	of	primitive	operations	executed	as	
a	function	of	the	input	size.

• We	express	this	function	with	big-Oh notation.

• Example:
• We	determine	that	algorithm	arrayMax executes	at	most	8n - 2	
primitive	operations

• We	say	that	algorithm	arrayMax “runs	in	O(n)	time”

• Since	constant	factors	and	lower-order	terms	are	eventually	
dropped	anyhow,	we	can	disregard	them	when	counting	
primitive	operations.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 27

2010 Goodrich, Tamassia

• The	big-Oh	notation	gives	an	upper	bound	on	the	growth	
rate	of	a	function.

• The	statement	“f(n) is	O(g(n))”	means	that	the	growth	
rate	of	f(n) is	no	more	than	the	growth	rate	of	g(n)

• We	can	use	the	big-Oh	notation	to	rank	functions	
according	to	their	growth	rate.

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 28

2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 29

2010 Goodrich, Tamassia

• We	further	illustrate	asymptotic	
analysis	with	two	algorithms	for	
prefix	averages.

• The	i-th prefix	average	of	an	array	
X is	average	of	the	first	(i + 1)
elements	of	X:
A[i] = (X[0] + X[1] + … + X[i])/(i+1)

• Computing	the	array	A of	prefix	
averages	of	another	array	X has	
applications	to	financial	analysis. 0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 30

2010 Goodrich, Tamassia

• The	following	algorithm	computes	prefix	averages	in	
quadratic	time	by	applying	the	definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ¬ new array of n integers
for i ¬ 0 to n - 1 do

s ¬ X[0]
for j ¬ 1 to i do

s ¬ s + X[j]
A[i] ¬ s / (i + 1)

return A

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 31

2010 Goodrich, Tamassia

• The	running	time	of	prefixAverages1 is	O(1 + 2 + …+ n)
• The	sum	of	the	first	n integers	is	n(n + 1) / 2
• There	is	a	simple	visual	proof	of	this	fact

• Thus,	algorithm	prefixAverages1 runs	in	O(n2) time	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 32

2010 Goodrich, Tamassia

• The	following	algorithm	computes	prefix	averages	in	
linear	time	by	keeping	a	running	sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ¬ new array of n integers
s ¬ 0
for i ¬ 0 to n - 1 do

s ¬ s + X[i]
A[i] ¬ s / (i + 1)

return A

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 33

2010 Goodrich, Tamassia

Algorithm Power(x,n):
Input: A	number	x	and	integer	n	≥	0
Output:	The	value	xn
if n	=	0	then
return	1

if n	is	odd	then
y	←	Power(x,(n−1)/2)
return x·y·y

else
y	←	Power(x,n/2)
return y·y

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 34

O(log n)

2010 Goodrich, Tamassia

public static int capacity(int[] arr)
{

return arr.length; // the capacity of an array
is its length

}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 35

O(1)

2010 Goodrich, Tamassia

public static int findMax(int[] arr)

{

int max = arr[0]; // start with the first integer in arr
for (int i=1; i < arr.length; i++)

if (max < arr[i])
max = arr[i]; // update the current maximum

return max; // the current maximum is now the
global maximum

}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 36

O(n)

2010 Goodrich, Tamassia

1. By	Example.
• Counter	Example.
• 2i – 1	is	prime	!!!

2. The	“Contra”	Attack.
• Contrapositive.
• If	ab is	even,	then	a is	even,	or	b is	even.

• Contradiction.
• If	ab is	odd,	then	a is	odd,	and	b is	odd.

3. Induction	and	Loop	Invariants.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 37

2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 38

