

• Stacks.
• Queues.
• Double-Ended	Queues.

2
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia

© 2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 3

© 2010 Goodrich, Tamassia

• An	abstract	data	
type	(ADT)	is	an	
abstraction	of	a	
data	structure.

• An	ADT	specifies:
• Data	stored.
• Operations	on	the	
data.
• Error	conditions	
associated	with	
operations.

• Example:	ADT	modeling	a	
simple	stock	trading	system
• The	data	stored	are	buy/sell	
orders.
• The	operations	supported	are

• order	buy(stock,	shares,	price).
• order	sell(stock,	shares,	price).
• void	cancel(order).

• Error	conditions:
• Buy/sell	a	nonexistent	stock.
• Cancel	a	nonexistent	order.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 4

© 2010 Goodrich, Tamassia

• The	Stack ADT	stores	arbitrary	
objects.

• Insertions	and	deletions	follow	
the	last-in	first-out	scheme.

• Think	of	a	spring-loaded	plate	
dispenser

• Main	stack	operations:
• push(object): inserts	an	element.
• object	pop(): removes	and	
returns	the	last	inserted	element.

• Auxiliary	stack	
operations:
• object	top(): returns	the	
last	inserted	element	
without	removing	it.

• integer	size(): returns	the	
number	of	elements	stored

• boolean isEmpty():
indicates	whether	no	
elements	are	stored

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 5

© 2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 6

Operation Output Stack Content
push(5) – (5)
push(3) – (5,3)
pop() 3 (5)
push(7) – (5,7)
pop() 7 (5)
top() 5 (5)
pop() 5 ()
pop() “error” ()
isEmpty() true ()
push(9) – (9)
push(7) – (9,7)
push(3) – (9,7,3)
push(5) – (9,7,3,5)
size() 4 (9,7,3,5)
pop() 5 (9,7,3)
push(8) – (9,7,3,8)
pop() 8 (9,7,3)
pop() 3 (9,7)

© 2010 Goodrich, Tamassia

• Java	interface	corresponding	
to	our	Stack	ADT

• Requires	the	definition	of	
class	
EmptyStackException

• Different	from	the	built-in	Java	
class	java.util.Stack

• http://docs.oracle.com/javase/7/doc
s/api/java/util/Stack.html

Stack.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 7

Chapter%2005%20-%20Code/EmptyStackException.java
http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
Chapter%2005%20-%20Code/Stack.java

© 2010 Goodrich, Tamassia

• Attempting	the	execution	
of	an	operation	of	ADT	
may	sometimes	cause	an	
error	condition,	called	an	
exception.

• Exceptions	are	said	to	be	
“thrown”	by	an	operation	
that	cannot	be	executed.

• In	the	Stack	ADT,	
operations	pop and	
top cannot	be	
performed	if	the	stack	
is	empty.

• Attempting	the	
execution	of	pop or	
top on	an	empty	stack	
throws	an	
EmptyStackException

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 8

© 2010 Goodrich, Tamassia

• Direct	applications
• Page-visited	history	in	a	Web	browser.
• Undo	sequence	in	a	text	editor.
• Chain	of	method	calls	in	the	Java	Virtual	Machine.

• Indirect	applications
• Auxiliary	data	structure	for	algorithms.
• Component	of	other	data	structures.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 9

© 2010 Goodrich, Tamassia

• The	Java	Virtual	Machine	(JVM)	
keeps	track	of	the	chain	of	active	
methods	with	a	stack.

• When	a	method	is	called,	the	JVM	
pushes on	the	stack	a	frame	
containing
• Local	variables	and	return	value
• Program	counter,	keeping	track	of	the	
statement	being	executed	

• When	a	method	ends,	its	frame	is	
popped from	the	stack	and	control	is	
passed	to	the	method	on	top	of	the	
stack

• Allows	for	recursion

main()
{

int i = 5;
foo(i);

}

foo(int j)
{

int k;
k = j+1;
bar(k);

}

bar(int m)
{

…
}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 10

© 2010 Goodrich, Tamassia

• A	simple	way	of	
implementing	the	Stack	
ADT	uses	an	array.

• We	add	elements	from	
left	to	right.

• A	variable	keeps	track	of	
the		index	of	the	top	
element.

S
0 1 2 t

…

Algorithm size()
return t + 1

Algorithm pop()
if isEmpty() then

throw EmptyStackException
else

t ¬ t - 1
return S[t + 1]

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 11

© 2010 Goodrich, Tamassia

• The	array	storing	the	stack	
elements	may	become	full.

• A	push operation	will	then	
throw	a	FullStackException
• Limitation	of	the	array-based		
implementation.

• Not	intrinsic	to	the	Stack	ADT.

S
0 1 2 t

…

Algorithm push(o)
if t = S.length - 1 then

throw FullStackException
else
t ¬ t + 1
S[t] ¬ o

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 12

Chapter%2005%20-%20Code/FullStackException.java

© 2010 Goodrich, Tamassia

• Performance
• Let	n be	the	number	of	elements	in	the	stack
• The	space used	is	O(n)
• Each	operation	runs in	time	O(1)

• Limitations
• The	maximum	size	of	the	stack	must	be	defined	a	priori	
and	cannot	be	changed.
• Trying	to	push	a	new	element	into	a	full	stack	causes	an	
implementation-specific	exception.

13
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013

© 2010 Goodrich, Tamassia

ArrayStack.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 14

Chapter%2005%20-%20Code/ArrayStack.java

© 2010 Goodrich, Tamassia

• Each	“(”,	“{”,	or	“[”	must	be	paired	with	a	matching	“)”,	“}”,	or	
“[”
• correct: ()(()){([()])}
• correct: ((()(()){([()])}
• incorrect:)(()){([()])}
• incorrect: ({[])}
• incorrect: (

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 15

© 2010 Goodrich, Tamassia

Algorithm ParenMatch(X,n):
Input: An array X of n tokens, each of which is either a grouping symbol, a
variable, an arithmetic operator, or a number
Output: true if and only if all the grouping symbols in X match
Let S be an empty stack
for i=0 to n-1 do

if X[i] is an opening grouping symbol then
S.push(X[i])

else if X[i] is a closing grouping symbol then
if S.isEmpty() then

return false {nothing to match with}
if S.pop() does not match the type of X[i] then

return false {wrong type}
if S.isEmpty() then

return true {every symbol matched}
else return false {some symbols were never matched}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 16

© 2010 Goodrich, Tamassia

<body>
<center>
<h1> The	Little	Boat	</h1>
</center>
<p>	The	storm	tossed	the	little
boat	like	a	cheap	sneaker	in	an
old	washing	machine.	The	three
drunken	fishermen	were	used	to
such	treatment,	of	course,	but
not	the	tree	salesman,	who	even	as
a	stowaway	now	felt	that	he
had	overpaid	for	the	voyage.	</p>

 Will	the	salesman	die?	
 What	color	is	the	boat?	
 And	what	about	Naomi?	

</body>

The Little Boat
The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color is the boat?
3. And what about Naomi?

HTML.java

For fully-correct HTML, each <name> should pair with a matching </name>

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 17

Chapter%2005%20-%20Code/HTML.java

© 2010 Goodrich, Tamassia

14 – 3 * 2 + 7 = (14 – (3 * 2)) + 7

Operator precedence
* has precedence over +/–

Associativity
operators of the same precedence group
evaluated from left to right
Example: (x – y) + z rather than x – (y + z)

Idea: push each operator on the stack, but first pop and perform higher and equal
precedence operations.

Slide by Matt Stallmann
included with permission.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 18

© 2010 Goodrich, Tamassia

Two	stacks:

• opStk holds	operators
• valStk holds	values
• Use	$ as	special		“end	of	input”	token	
with	lowest	precedence

Algorithm doOp()

x ¬ valStk.pop();
y ¬ valStk.pop();
op¬ opStk.pop();
valStk.push(y	op x)

Algorithm repeatOps(refOp):	
while (valStk.size()	>	1	Ù

prec(refOp)	≤
prec(opStk.top())

doOp()

Algorithm EvalExp()

Input:	a	stream	of	tokens	
representing	an	arithmetic	
expression	(with	numbers)

Output:	the	value	of	the	expression

while	there’s	another	token	z
if	isNumber(z)	then	

valStk.push(z)
else	

repeatOps(z);	
opStk.push(z)

repeatOps($);				
return	valStk.top()

Slide by Matt Stallmann
included with permission.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 19

© 2010 Goodrich, Tamassia

14 ≤ 4 – 3 * 2 + 7 Operator ≤ has lower
precedence than +/–

–
≤14

4

*3
–
≤14

4

2
*3
–
≤14

4

+

2
*3
–
≤14

4

+

6
–
≤14

4 +
≤14

-2

$

7
+
≤14

-2

$

F
$

≤14
5

Slide by Matt Stallmann
included with permission.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 20

© 2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 21

© 2010 Goodrich, Tamassia

• The	Queue ADT	stores	
arbitrary	objects.

• Insertions	and	deletions	follow	
the	first-in	first-out	scheme.

• Insertions	are	at	the	rear	of	
the	queue	and	removals	are	at	
the	front of	the	queue.

• Main	queue	operations:
• enqueue(object):	inserts	an	
element	at	the	end	of	the	
queue.
• object	dequeue():	removes	
and	returns	the	element	at	
the	front	of	the	queue.

• Auxiliary	queue	operations:
• object	front():	returns	the	
element	at	the	front	without	
removing	it.
• integer	size():	returns	the	
number	of	elements	stored
• boolean isEmpty():	
indicates	whether	no	
elements	are	stored

• Exceptions
• Attempting	the	execution	of	
dequeue or	front	on	an	
empty	queue	throws	an	
EmptyQueueException

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 22

Chapter%2005%20-%20Code/EmptyQueueException.java

© 2010 Goodrich, Tamassia

Operation Output Queue Content
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() 5 (3)
enqueue(7) – (3, 7)
dequeue() 3 (7)
front() 7 (7)
dequeue() 7 ()
dequeue() “error” ()
isEmpty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() 9 (7, 3, 5)
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 23

© 2010 Goodrich, Tamassia

• Direct	applications
•Waiting	lists,	bureaucracy,
• Access	to	shared	resources	(e.g.,	printer).
• Multiprogramming.

• Indirect	applications
• Auxiliary	data	structure	for	algorithms.
• Component	of	other	data	structures.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 24

© 2010 Goodrich, Tamassia

• Use	an	array	of	size	N in	a	circular	fashion.
• Two	variables	keep	track	of	the	front	and	rear
• f - index	of	the	front	element
• r-index	immediately	past	the	rear	element

• Array	location	r is	kept	empty.

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 25

© 2010 Goodrich, Tamassia

• We	use	the	modulo	
operator	(remainder	
of	division)

Algorithm size()
return (N - f + r) mod N

Algorithm isEmpty()
return (f = r)

Q

0 1 2 rf

Q

0 1 2 fr

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 26

© 2010 Goodrich, Tamassia

Algorithm enqueue(o)
if size() = N - 1 then

throw FullQueueException
else
Q[r] ¬ o
r ¬ (r + 1) mod N

• Operation	enqueue throws	
an	exception	if	the	array	is	
full

• This	exception	is	
implementation-dependent

Q

0 1 2 rf

Q

0 1 2 fr

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 27

© 2010 Goodrich, Tamassia

• Operation	dequeue throws	
an	exception	if	the	queue	
is	empty.

• This	exception	is	specified	
in	the	queue	ADT.

Algorithm dequeue()
if isEmpty() then

throw EmptyQueueException
else
o ¬ Q[f]
f ¬ (f + 1) mod N
return o

Q

0 1 2 rf

Q

0 1 2 fr
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 28

© 2010 Goodrich, Tamassia

• Java	interface	corresponding	to	
our	Queue	ADT.

• Requires	the	definition	of	class	
EmptyQueueException

• No	corresponding	built-in	Java	
class.

Queue.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 29

Chapter%2005%20-%20Code/EmptyQueueException.java
Chapter%2005%20-%20Code/Queue.java

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 30

• We	can	implement	a	round	robin	scheduler	using	a	
queue	Q	by	repeatedly	performing	the	following	steps:
1. e	=	Q.dequeue()
2. Service	element	e
3. Q.enqueue(e)

Shared
Service

EnqueueDequeue

Queue

© 2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 31

