

• General	Trees.
• Tree	Traversal	Algorithms.
• Binary	Trees.

2
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia

• In	computer	science,	a	tree	
is	an	abstract	model	of	a	
hierarchical	structure.

• A	tree	consists	of	nodes	
with	a	parent-child
relation.

• Applications:
• Organization	charts.
• File	systems.
• Programming	
environments.

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 3© 2010 Goodrich, Tamassia

Subtree

• Root:	node	without	parent	(A)
• Internal	node: node	with	at	least	
one	child	(A,	B,	C,	F)

• External	node	(a.k.a.	leaf):	node	
without	children	(E,	I,	J,	K,	G,	H,	D)

• Ancestors	of	a	node:	parent,	
grandparent,	grand-grandparent,	
etc.

• Depth	of	a	node:	number	of	
ancestors

• Height	of	a	tree:	maximum	depth	
of	any	node	(3)

• Descendant	of	a	node:	child,	
grandchild,	grand-grandchild,	etc.

A

B DC

G HE F

I J K

• Subtree:	tree	consisting	of	
a	node	and	its	descendants.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 4© 2010 Goodrich, Tamassia

• edge	of	tree	T	is	a	pair	of	nodes	
(u,v)	such	that	u	is	the	parent	of	v,	
or	vice	versa.

• Path	of	T	is	a	sequence	of	nodes	
such	that	any	two	consecutive	
nodes	in	the	sequence	form	an	
edge.

• A	tree	is	ordered if	there	is	a	
linear	ordering	defined	for	the	
children	of	each	node

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 5© 2010 Goodrich, Tamassia

• We	use	positions	(nodes)	to	
abstract	nodes.
• getElement(): Return	the	
object	stored	at	this	position.

• Generic	methods:
• integer	getSize()
• boolean isEmpty()
• Iterator iterator()
• Iterable positions()

• Accessor methods:
• position	getRoot()
• position	getThisParent(p)
• Iterable children(p)

• Query	methods:
• boolean isInternal(p)
• boolean isExternal(p)
• boolean isRoot(p)

• Update	method:
• element	replace	(p,	o)

• Additional	update	methods	
may	be	defined	by	data	
structures	implementing	the	
Tree	ADT.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 6© 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 7© 2010 Goodrich, Tamassia

• Let	v	be	a	node	of	a	tree	T.	The	depth of	v is	the	number	of	
ancestors	of	v,	excluding	v itself.
• If	v is	the	root,	then	the	depth	of	v is	0
• Otherwise,	the	depth	of	v is	one	plus	the	depth	of	the	parent	of	v.

• The	running	time	of	algorithm	depth(T,	v)	is	O(dv),	where	dv
denotes	the	depth	of	the	node	v in	the	tree	T.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 8

Algorithm depth(T,	v):
if v is	the	root	of	T	then

return 0
else

return 1+depth(T,	w),	where	w	is	the	parent	of	v in	T

© 2010 Goodrich, Tamassia

• A	tree	is	a	data	structure	which	stores	elements	in	parent-
child relationship.

A

B C

D E F G H

Root node

Internal nodes

Leaf nodes (External nodes)

Siblings

Siblings

Siblings

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 9

• Depth:	the	number	of	
ancestors	of	that	node	
(excluding	itself).

• Height: the	maximum	
depth	of	an	external	node	
of	the	tree/subtree.

A

B C

D E F G H

I

Depth(D) = ?Depth(D) = 1Depth(D) = 2

Depth(I) = ?Depth(I) = 3

Height = MAX[Depth(A), Depth(B), Depth(C), Depth(D), Depth(E), Depth(F), Depth(G), Depth(H), Depth(I)]

Height = MAX[0, 1, 1, 2, 2, 2, 2, 2, 3] = 3
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 10

• The	height of	a	node	v in	a	tree	T	is	can	be	calculated	using	the	
depth algorithm.

• algorithm	height1 runs	in	O(n2)	time

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 11

Algorithm	height1(T):
h←	0
for each	vertex	v in	T	do

if v is	an	external	node	in	T	then
h	←	max(h,	depth(T,	v))

return h

© 2010 Goodrich, Tamassia

• The	height of	a	node	v in	a	tree	T	is	also	defined	recursively:
• If	v is	an	external	node,	then	the	height	of	v is	0
• Otherwise,	the	height	of	v is	one	plus	the	maximum	height	of	a	
child	of	v.

• algorithm	height1 runs	in	O(n)	time
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 12

Algorithm	height2(T,	v):
if	v is	an	external	node	in	T	then

return 0
else

h←	0
for each	child	w	of	v in	T	do

h←	max(h,	height2(T,	w))
return 1+h

© 2010 Goodrich, Tamassia

• A	traversal	visits	the	nodes	of	a	
tree	in	a	systematic	manner.

• In	a	preorder traversal,	a	node	is	
visited	before	its	descendants.	

• Application:	print	a	structured	
document.

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity

2.3 Bank
Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child	w of	v

preorder (w)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 13© 2010 Goodrich, Tamassia

• In	a	postorder traversal,	a	node	
is	visited	after	its	descendants.

• Application:	compute	space	used	
by	files	in	a	directory	and	its	
subdirectories.

Algorithm postOrder(v)
for each child	w of	v

postOrder (w)
visit(v)

cs16/

homeworks/
todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 14© 2010 Goodrich, Tamassia

• The	order	in	which	the	nodes	are	visited	during	a	tree	
traversal	can	be	easily	determined	by	imagining	there	is	a	
“flag”	attached	to	each	node,	as	follows:

• To	traverse	the	tree,	collect	the	flags:

preorder inorder postorder

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C ACPSC 3200
University of Tennessee at Chattanooga – Summer 2013 15

• The	other	traversals	are	the	reverse	of	these	three	standard	
ones
• That	is,	the	right	subtree is	traversed	before	the	left	subtree is	
traversed

• Reverse	preorder: root,	right	subtree,	left	subtree.
• Reverse	inorder:	right	subtree,	root,	left	subtree.
• Reverse	postorder: right	subtree,	left	subtree,	root.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 16

• A	binary	tree	is	a	tree	with	the	following	
properties:
• Each	internal	node	has	at	most	two	
children (exactly	two	for	proper	
binary	trees).
• The	children	of	a	node	are	an	ordered	
pair.

• We	call	the	children	of	an	internal	node	
left	child and	right	child.

• Alternative	recursive	definition:	a	binary	
tree	is	either
• a	tree	consisting	of	a	single	node,	or
• a	tree	whose	root	has	an	ordered	pair	of	
children,	each	of	which	is	a	binary	tree.

A

B C

F GD E

H I

Applications:
• arithmetic	expressions.
• decision	processes.
• searching.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 17© 2010 Goodrich, Tamassia

• A	binary	tree	is	balanced	if	every	level	above	the	lowest	is	“full”	
(contains	2h nodes)

• In	most	applications,	a	reasonably	balanced	binary	tree	is	desirable.

a

b c

d e f g

h i j
A balanced binary tree

a

b

c

d

e

f

g h

i j
An unbalanced binary tree

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 18

• Binary	tree	associated	with	a	decision	process
• internal	nodes:	questions	with	yes/no	answer
• external	nodes:	decisions

• Example:	dining	decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 19© 2010 Goodrich, Tamassia

• Binary	tree	associated	with	an	arithmetic	expression
• internal	nodes:	operators
• external	nodes:	operands

• Example: arithmetic	expression	tree	for	the	expression	
(2	´ (a	- 1)	+ (3	´ b))

+

´´

-2

a 1

3 b

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 20© 2010 Goodrich, Tamassia

• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 21

• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 2
External nodes = 2

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 22

• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 2
External nodes = 3

E

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 23

• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 3
External nodes = 3

E F

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 24

• Is	a	binary	tree	where	the	number	of	external	nodes	is	1	
more	than	the	number	of	internal	nodes.

A

B C

D

Internal nodes = 3
External nodes = 4

E F G

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 25

Worst	case: The	tree	
having	the	minimum	
number	of	external	and	
internal	nodes.

Best	case: The	tree	
having	the	maximum	
number	of	external	and	
internal	nodes.	

1.	The	number	of	external	nodes	is	at	least	h+1 and	at	most	2h

Ex:	h	=	3

External nodes = 3+1 = 4

External nodes = 23 = 8

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 26

2.	The	number	of	internal	nodes	is	at	least	h and	at	most	2h-1
Ex:	h	=	3
Worst	case: The	tree	
having	the	minimum	
number	of	external	and	
internal	nodes.

Best	case: The	tree	
having	the	maximum	
number	of	external	and	
internal	nodes.	

Internal nodes = 3

Internal nodes = 23 -1=7

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 27

3.	The	number	of	nodes	is	at	least	2h+1 and	at	most	2h+1 -1
Ex:	h	=	3

Internal nodes = 3
External nodes = 4

Internal + External = 2*3 +1 = 7

Internal nodes = 7
External nodes = 8

Internal + External = 23+1 – 1 = 15

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 28

4.	The	height	is	at	least	log(n+1)-1	and	at	most	(n-1)/2

Number of nodes = 7
h = 3

Number of nodes = 15
h = 3

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 29

• The	BinaryTree ADT	extends the	
Tree	ADT,	i.e.,	it	inherits	all	the	
methods	of	the	Tree	ADT.

• Additional	methods:
• position	getThisLeft(p)
• position	getThisRightight(p)
• boolean hasLeft(p)
• boolean hasRight(p)

• Update	methods	may	be	
defined	by	data	structures	
implementing	the	
BinaryTree ADT.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 30© 2010 Goodrich, Tamassia

• A	node	is	represented	by	
an	object	storing
• Element
• Parent	node
• Left	child	node
• Right	child	node

• Node	objects	implement	
the	Position	ADT

B

DA

C E

Æ Æ

Æ Æ Æ Æ

B

A D

C E

Æ

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 31© 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 32© 2010 Goodrich, Tamassia

• addRoot(e): Create	and	return	a	new	node	r	storing	element	e	and	
make	r	the	root	of	the	tree;	an	error	occurs	if	the	tree	is	not	empty.

• insertLeft(v,	e): Create	and	return	a	new	node	w	storing	element	e,	add	
w	as	the	the left	child	of	v	and	return	w;	an	error	occurs	if	v	already	has	
a	left	child.

• insertRight(v	,e): Create	and	return	a	new	node	z	storing	element	e,	
add	z	as	the	the right	child	of	v	and	return	z;	an	error	occurs	if	v	already	
has	a	right	child.

• remove(v): Remove	node	v,	replace	it	with	its	child,	if	any,	and	return	
the	element	stored	at	v;	an	error	occurs	if	v	has	two	children.

• attach(v,	T1,	T2): Attach	T1	and	T2,	respectively,	as	the	left	and	right	
subtrees of	the	external	node	v;	an	error	condition	occurs	ifv is	not	
external.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 33© 2010 Goodrich, Tamassia

• Binary	trees	are	excellent	data	structures	for	searching	
large	amounts	of	information.	

• When	used	to	facilitate	searches,	a	binary	tree	is	called	a
binary	search	tree.	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 34

• A	binary	search	tree	(BST)	is	a	binary	tree	in	which:
• Elements	in	left subtree are	smaller than	the	current	node.
• Elements	in	right subtree are	greater than	the	current	node.

10

7 12

5 9 11 25

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 35

• There	are	three	common	methods	for	traversing	a	binary	tree	and	
processing	the	value	of	each	node:	
• Pre-order
• In-order
• Post-order

• Each	of	these	methods	is	best	implemented	as	a	recursive	function.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 36

• Pre-order: Node	a Left	a Right	

A

B C

D E F G

A B D E C F GCPSC 3200
University of Tennessee at Chattanooga – Summer 2013 37

• Insert	the	following	items	into	a	binary	search	tree.
50,	25,	75,	12,	30,	67,	88,	6,	13,	65,	68

• Draw	the	binary	tree	and	print	the	items	using	Pre-order	
traversal.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 38

• In-order: Left	a Node	a Right	

A

B C

D E F G

D B E A F C GCPSC 3200
University of Tennessee at Chattanooga – Summer 2013 39

• From	the	previous	exercise,	print	the	tree’s	nodes	using	In-
order	traversal.

50

25 75

12 30 67 88

6 13 65 68

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 40

• Post-order: Left	a Right	a Node	

A

B C

D E F G

D E B F G C ACPSC 3200
University of Tennessee at Chattanooga – Summer 2013 41

• From	the	previous	exercise,	print	the	tree’s	nodes	using	Post-
order	traversal.

50

25 75

12 30 67 88

6 13 65 68

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 42

• In	an	inorder traversal	a	node	
is	visited	after	its	left	subtree
and	before	its	right	subtree

• Application:	draw	a	binary	tree
• x(v)	=	inorder rank	of	v
• y(v)	=	depth	of	v

Algorithm inOrder(v)
if hasLeft (v)

inOrder (left (v))
visit(v)
if hasRight (v)

inOrder (right (v))

3

1

2

5

6

7 9

8

4

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 43© 2010 Goodrich, Tamassia

• After	deleting	an	item,	the	resulting	binary	tree	must	be	a	
binary	search	tree.
1. Find	the	node	to	be	deleted.
2. Delete	the	node	from	the	tree.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 44

• The	node	to	be	deleted	has	no	left	and	right	subtree (the	
node	to	be	deleted	is	a	leaf).

60

50 70

30 53 65 80

51 57 61 67 79 95

delete(30)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 45

• The	node	to	be	deleted	has	no	left	subtree (the	left	subtree
is	empty	but	it	has	a	nonempty	right	subtree).

60

50 70

30 53 65 80

35 51 57 61 67 79 95

delete(30)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 46

• The	node	to	be	deleted	has	no	right	subtree (the	right	
subtree is	empty	but	it	has	a	nonempty	left	subtree).

60

50 70

30 53 65 80

25 35 51 57 61 67 79

delete(80)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 47

• The	node	to	be	deleted	has	nonempty	left	and	right	
subtree.

60

50 70

30 53 65 80

25 35 51 57 61 67 79 95

delete(70)

79

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 48

• The	node	to	be	deleted	has	nonempty	left	and	right	
subtree.

60

50 70

30 53 65 80

25 35 51 57 61 67 79 95

delete(70)

67

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 49

50

• Binary	search	can	perform	operations	get,	floorEntry and	
ceilingEntry on	an	ordered	map	implemented	by	means	of	an	
array-based	sequence,	sorted	by	key
• similar	to	the	high-low	game
• at	each	step,	the	number	of	candidate	items	is	halved
• terminates	after	O(log	n)	steps

• Example:	find(7)
1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia

51

• A	binary	search	tree	is	a	
binary	tree	storing	keys	(or	
key-value	entries)	at	its	
internal	nodes	and	
satisfying	the	following	
property:
• Let	u,	v,	and	w be	three	
nodes	such	that	u is	in	
the	left	subtree of	v and	
w is	in	the	right	subtree
of	v.	We	have	
key(u)	£ key(v)	£ key(w)

• External	nodes	do	not	store	
items.

• An	inorder traversal	of	a	
binary	search	trees	visits	
the	keys	in	increasing	order.

6

92

41 8

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia

52

• To	search	for	a	key	k,	we	trace	
a	downward	path	starting	at	
the	root.

• The	next	node	visited	
depends	on	the	comparison	
of	kwith	the	key	of	the	
current	node.

• If	we	reach	a	leaf,	the	key	is	
not	found.

• Example:	get(4):
• Call	TreeSearch(4,root)

Algorithm TreeSearch(k, v)
if T.isExternal (v)
return v

if	k < key(v)
return TreeSearch(k, T.left(v))

else	if	k = key(v)
return v

else {	k > key(v)	}
return TreeSearch(k, T.right(v))

6

92

41 8

<

>

=

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 53

