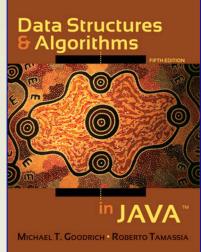
Data Structure & Algorithms in JAVA Data Structures

5th edition Michael T. Goodrich Roberto Tamassia



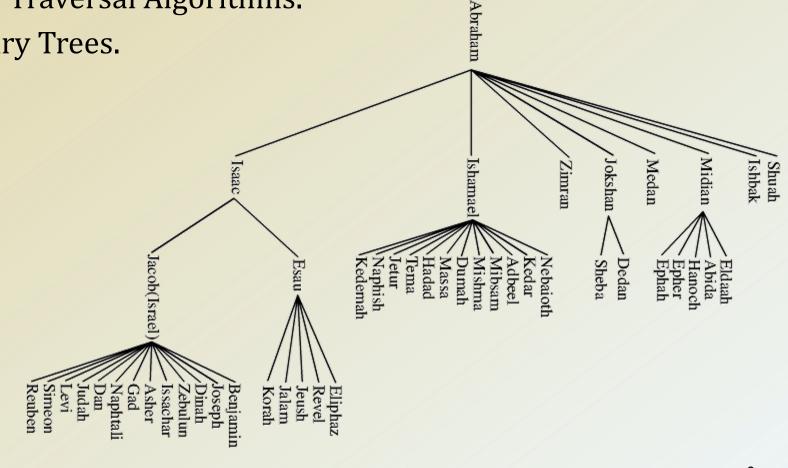
Chapter 7: Trees

CPSC 3200

Algorithm Analysis and Advanced Data Structure

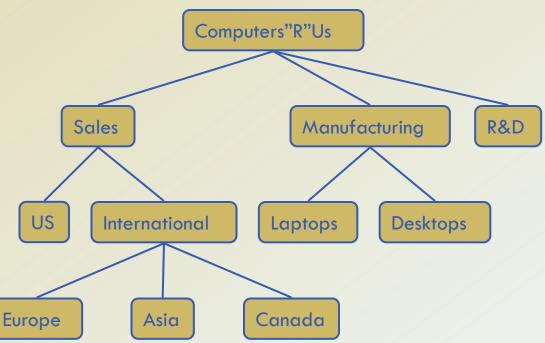
Chapter Topics

- General Trees. •
- Tree Traversal Algorithms.
- **Binary Trees.** •



What is a Tree

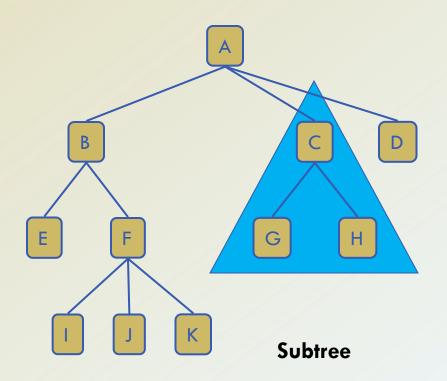
- In computer science, a tree is an abstract model of a hierarchical structure.
- A tree consists of nodes with a parent-child relation.
- Applications:
 - Organization charts.
 - File systems.
 - Programming environments.



Tree Terminology

- **Root:** node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- **Depth of a node:** number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

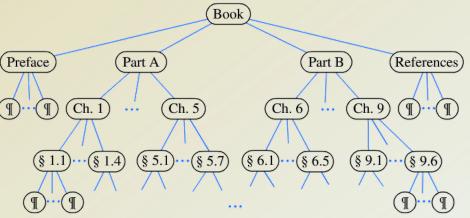
• **Subtree:** tree consisting of a node and its descendants.



Tree Terminology (Cont.)

- edge of tree T is a pair of nodes

 (u,v) such that u is the parent of v,
 or vice versa.
- **Path of T** is a sequence of nodes such that any two consecutive nodes in the sequence form an edge.
- A tree is **ordered** if there is a linear ordering defined for the children of each node

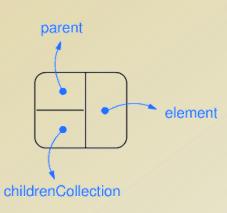


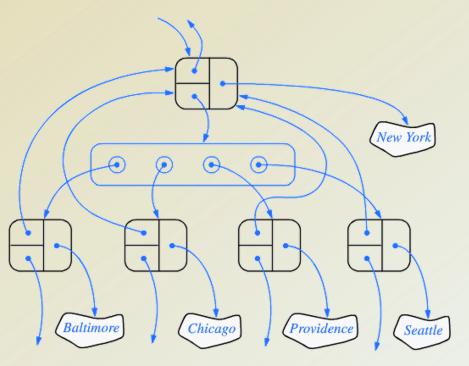
Tree ADT

- We use positions (nodes) to abstract nodes.
 - getElement(): Return the object stored at this position.
- Generic methods:
 - integer getSize()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Accessor methods:
 - position getRoot()
 - position getThisParent(p)
 - Iterable children(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update method:
 - element replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT.

Linked structure for General Tree





Operation	Time
size, isEmpty	O(1)
iterator, positions	O(n)
replace	O(1)
root, parent	O(1)
children(v)	$O(c_v)$
isInternal, isExternal, isRoot	O(1)

Depth and Height

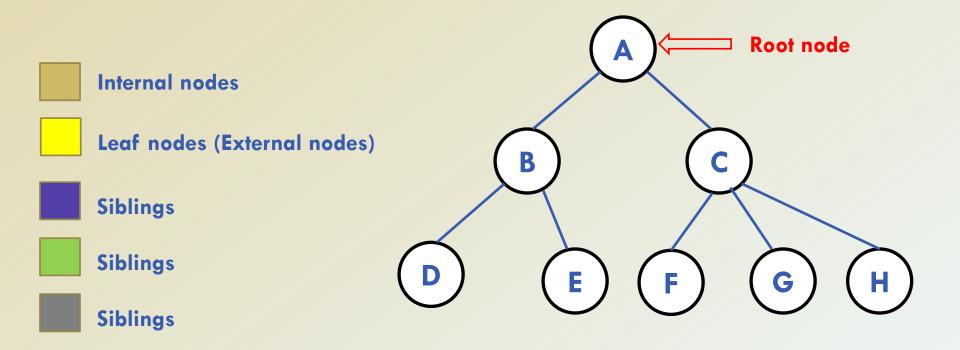
- Let v be a node of a tree T. The depth of v is the number of ancestors of v, excluding v itself.
 - If **v** is the root, then the depth of **v** is 0
 - Otherwise, the depth of **v** is one plus the depth of the parent of **v**.

```
Algorithm depth(T, v):
if v is the root of T then
    return 0
else
    return 1+depth(T, w), where w is the parent of v in T
```

The running time of algorithm depth(T, v) is O(d_v), where d_v denotes the depth of the node v in the tree T.

Data Structure (Tree)

 A tree is a data structure which stores elements in parentchild relationship.



Attributes of a tree

- **Depth:** the number of ancestors of that node (excluding itself).
- Height: the maximum depth of an external node of the tree/subtree.

Of the tree/subtree. Depth(D) = 2
D
E
F
G
(H
Depth(I) = 3
Height = MAX[Depth(A), Depth(B), Depth(C), Depth(D), Depth(E), Depth(G), Depth(H), Depth(I)]

B

Depth and Height (Cont.)

The height of a node v in a tree T is can be calculated using the depth algorithm.

```
Algorithm height1(T):

h \leftarrow 0

for each vertex v in T do

if v is an external node in T then

h \leftarrow \max(h, \operatorname{depth}(T, v))

return h
```

algorithm height1 runs in O(n²) time

Depth and Height (Cont.)

- The height of a node v in a tree T is also defined recursively:
 - If **v** is an external node, then the height of **v** is 0
 - Otherwise, the height of **v** is one plus the maximum height of a child of **v**.

```
Algorithm height2(T, v):

if v is an external node in T then

return 0

else

h \leftarrow 0

for each child w of v in T do

h \leftarrow max(h, height2(T, w))

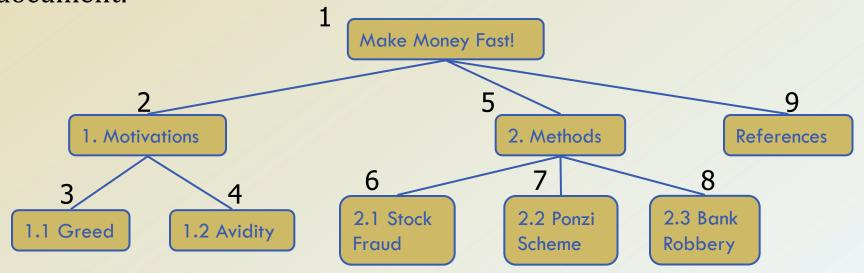
return 1+h
```

algorithm height1 runs in O(n) time

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner.
- In a preorder traversal, a node is visited before its descendants.
- Application: print a structured document.

Algorithm preOrder(v) visit(v) for each child w of v preorder (w)

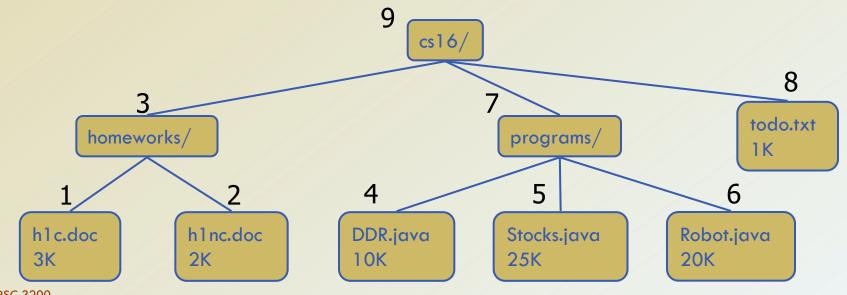


CPSC 3200 University of Tennessee at Chattanooga – Summer 2013

Postorder Traversal

- In a **postorder** traversal, a node is visited after its descendants.
- Application: compute space used by files in a directory and its subdirectories.

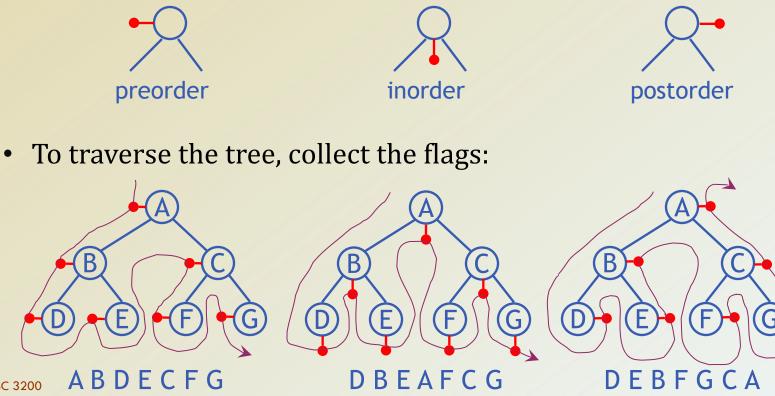
Algorithm postOrder(v) for each child w of v postOrder (w) visit(v)



CPSC 3200 University of Tennessee at Chattanooga – Summer 2013

Tree traversals using "flags"

• The order in which the nodes are visited during a tree traversal can be easily determined by imagining there is a "flag" attached to each node, as follows:



CPSC 3200

Other traversals

- The other traversals are the reverse of these three standard ones
 - That is, the right subtree is traversed before the left subtree is traversed
- Reverse preorder: root, right subtree, left subtree.
- Reverse inorder: right subtree, root, left subtree.
- Reverse postorder: right subtree, left subtree, root.

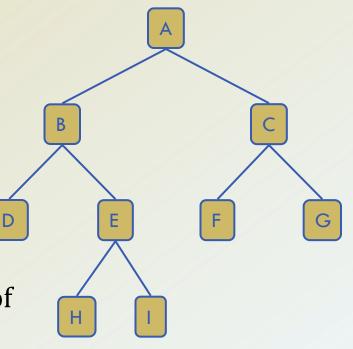
Binary Trees

- A **binary tree** is a tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees).
 - The children of a node are an ordered pair.
- We call the children of an internal node left child and right child.
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree.

arithmetic expressions. decision processes.

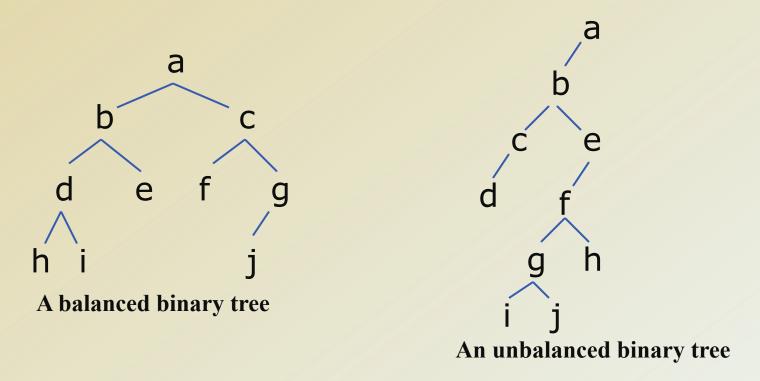
• searching.

Applications:



University of Tennessee at Chattanooga – Summer 2013

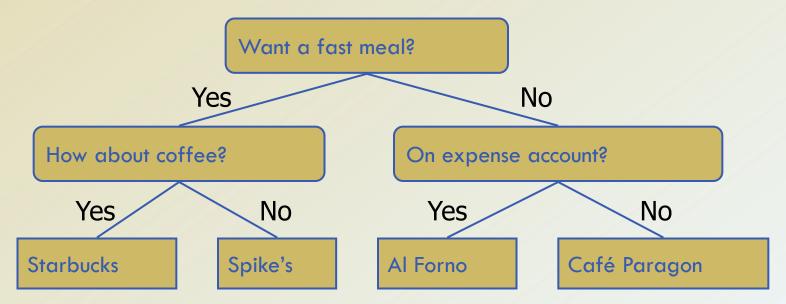
Tree Balance



- A binary tree is balanced if every level above the lowest is "full" (contains 2^h nodes)
- In most applications, a reasonably balanced binary tree is desirable.

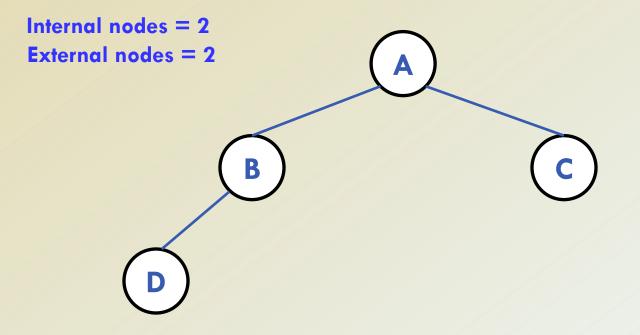
Decision Tree

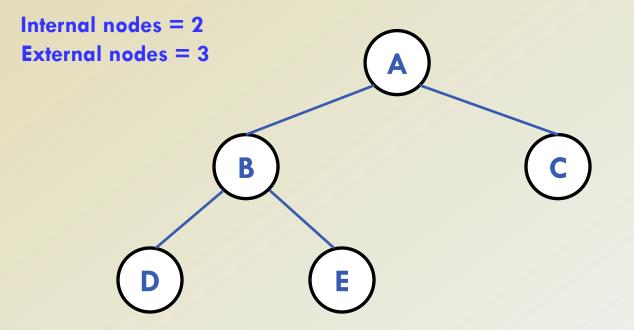
- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

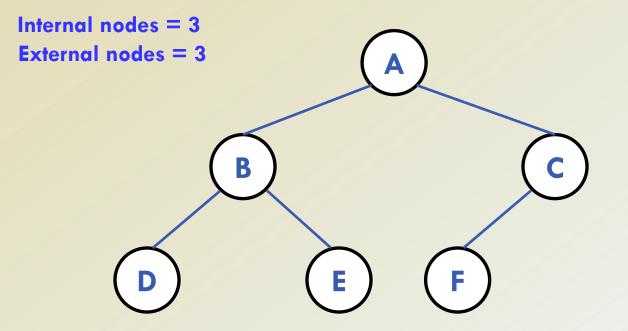


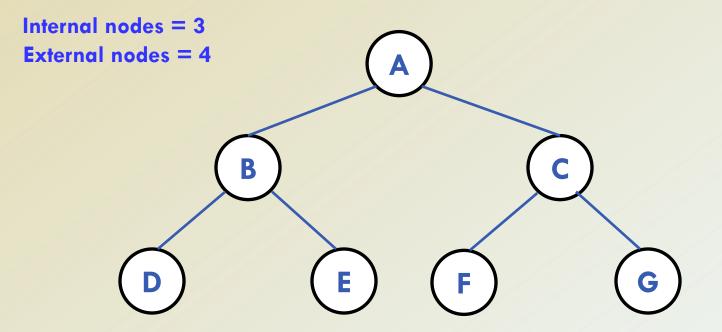
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression
 (2 × (a 1) + (3 × b))









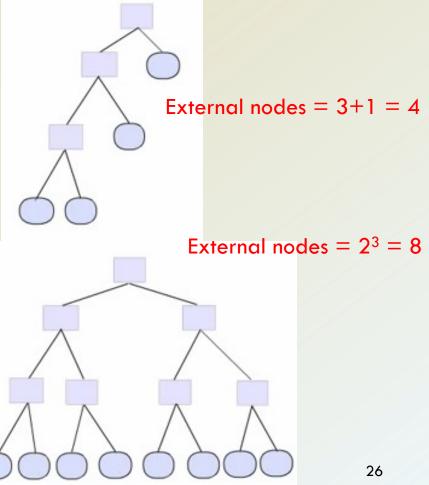
1. The number of external nodes is at least h+1 and at most 2^h

Worst case: The tree having the minimum number of external and internal nodes.

Ex: h = 3

Best case: The tree having the maximum number of external and internal nodes.

CPSC 3200 University of Tennessee at Chattanooga – Summer 2013



2. The number of internal nodes is at least h and at most 2^h-1

Ex: h = 3Worst case: The tree having the minimum number of external and internal nodes.

Internal nodes = 3Internal nodes = $2^3 - 1 = 7$ 27

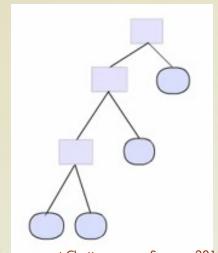
Best case: The tree having the maximum number of external and internal nodes.

CPSC 3200 University of Tennessee at Chattanooga – Summer 2013

3. The number of nodes is at least 2h+1 and at most 2^{h+1} -1 Ex: h = 3

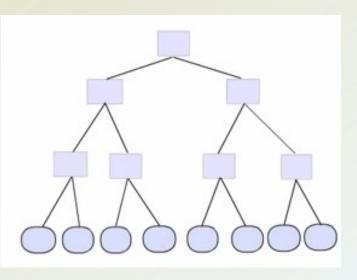
Internal nodes = 3 External nodes = 4

Internal + External = $2^*3 + 1 = 7$



Internal nodes = 7 External nodes = 8

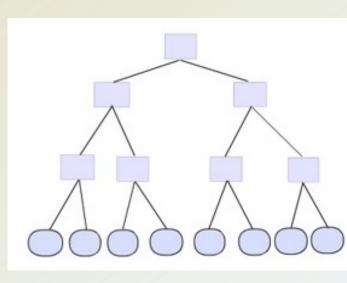
Internal + External = $2^{3+1} - 1 = 15$

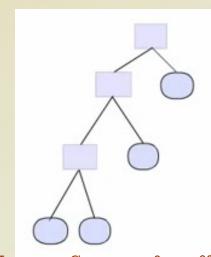


CPSC 3200

4. The height is at least log(n+1)-1 and at most (n-1)/2

Number of nodes = 7 h = 3 Number of nodes = 15h = 3





University of Tennessee at Chattanooga – Summer 2013

CPSC 3200

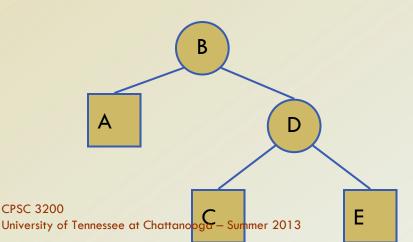
BinaryTree ADT

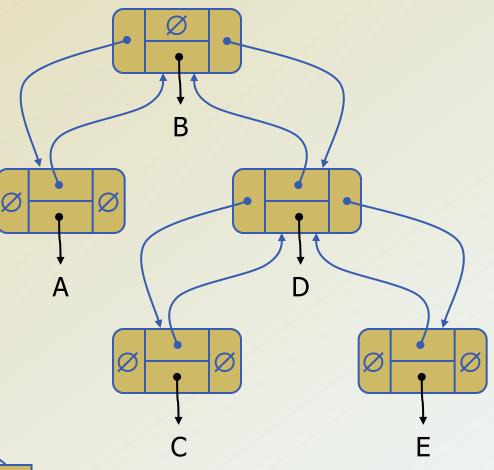
- The BinaryTree ADT **extends** the Tree ADT, i.e., it inherits all the methods of the Tree ADT.
- Additional methods:
 - position getThisLeft(p)
 - position getThisRightight(p)
 - boolean hasLeft(p)
 - boolean hasRight(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT.

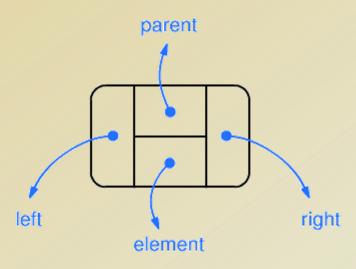
Linked Structure for Binary Trees

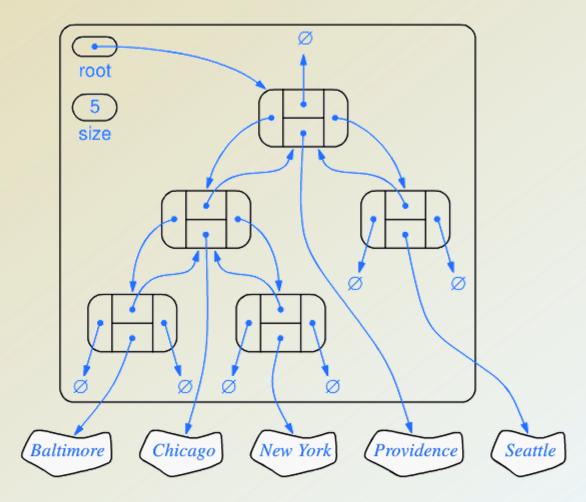
- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT





Binary Tree - Example





Implementation of the Linked Binary Tree Structure

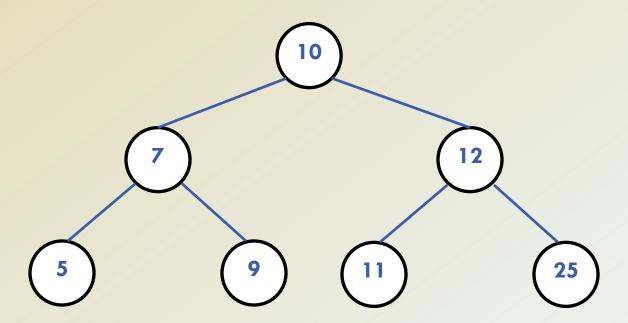
- **addRoot(e)**: Create and return a new node r storing element e and make r the root of the tree; an error occurs if the tree is not empty.
- insertLeft(v, e): Create and return a new node w storing element e, add w as the the left child of v and return w; an error occurs if v already has a left child.
- insertRight(v,e): Create and return a new node z storing element e, add z as the the right child of v and return z; an error occurs if v already has a right child.
- remove(v): Remove node v, replace it with its child, if any, and return the element stored at v; an error occurs if v has two children.
- attach(v, T1, T2): Attach T1 and T2, respectively, as the left and right subtrees of the external node v; an error condition occurs ifv is not external.

Binary Search Tree (BST)

- Binary trees are excellent data structures for searching large amounts of information.
- When used to facilitate searches, a binary tree is called a binary search tree.

Binary Search Tree (BST)

- A binary search tree (BST) is a binary tree in which:
 - Elements in left subtree are smaller than the current node.
 - Elements in right subtree are greater than the current node.

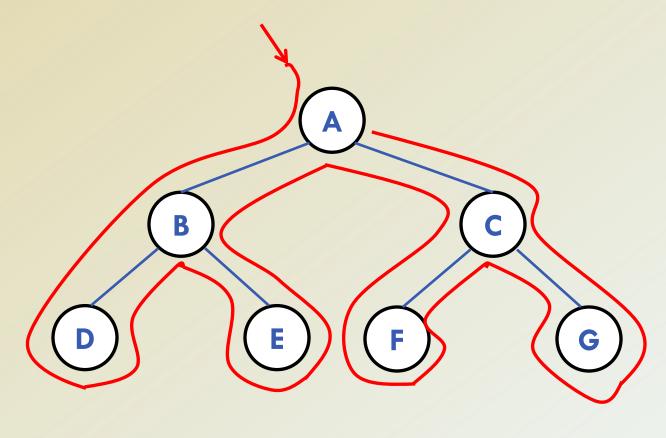


Traversing the tree

- There are three common methods for traversing a binary tree and processing the value of each node:
 - Pre-order
 - In-order
 - Post-order
- Each of these methods is best implemented as a recursive function.

Tree Traversal (Pre-order)

• **Pre-order:** Node ⇒ Left ⇒ Right



A B D E C F G

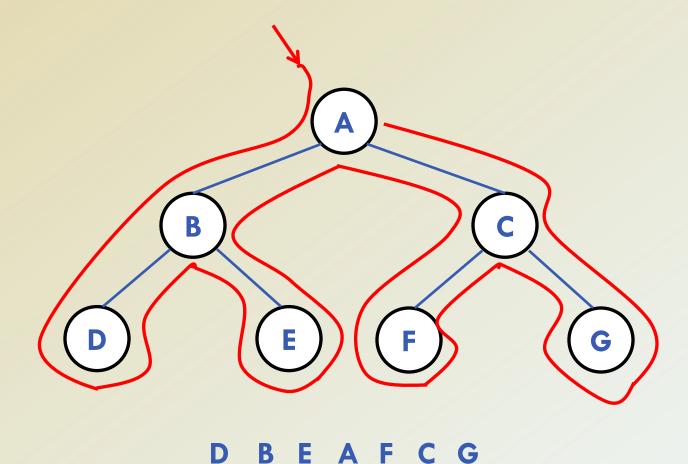
CPSC 3200

Exercise: Pre-order traversal

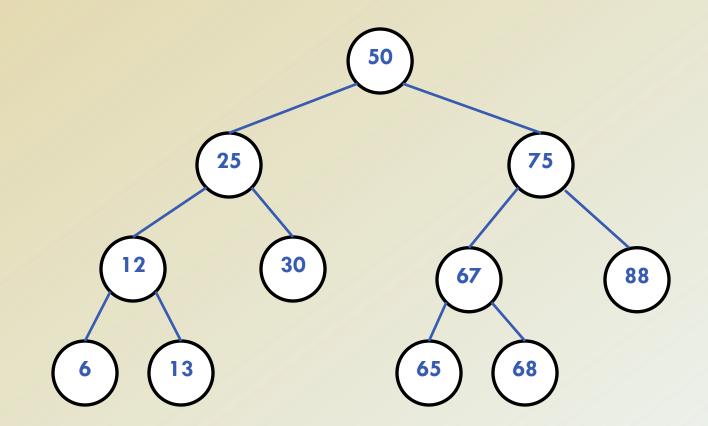
- Insert the following items into a binary search tree.
 50, 25, 75, 12, 30, 67, 88, 6, 13, 65, 68
- Draw the binary tree and print the items using **Pre-order** traversal.

Tree Traversal (In-order)

• In-order: Left ⇒ Node ⇒ Right



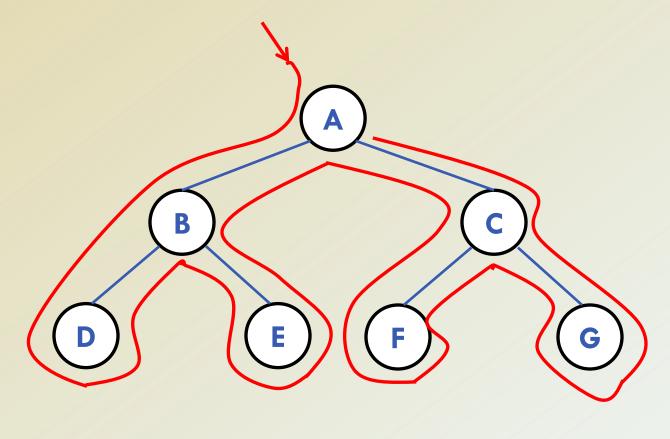
Exercise: In-order traversal



 From the previous exercise, print the tree's nodes using Inorder traversal.

Tree Traversal (Post-order)

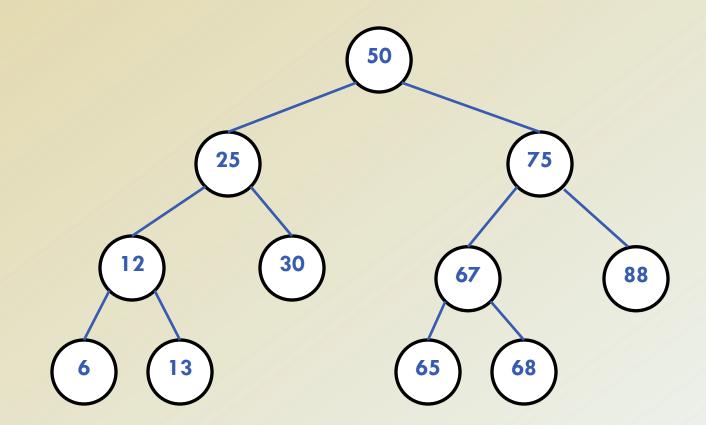
• Post-order: Left ⇒ Right ⇒ Node



D E B F G C A

CPSC 3200

Exercise: Post-order traversal



 From the previous exercise, print the tree's nodes using Postorder traversal.

University of Tennessee at Chattanooga – Summer 2013

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree

2

3

6

5

8

9

- x(v) = inorder rank of v
- y(v) = depth of v

Algorithm inOrder(v) if hasLeft (v) inOrder (left (v)) visit(v) if hasRight (v)

inOrder (*right* (*v*))

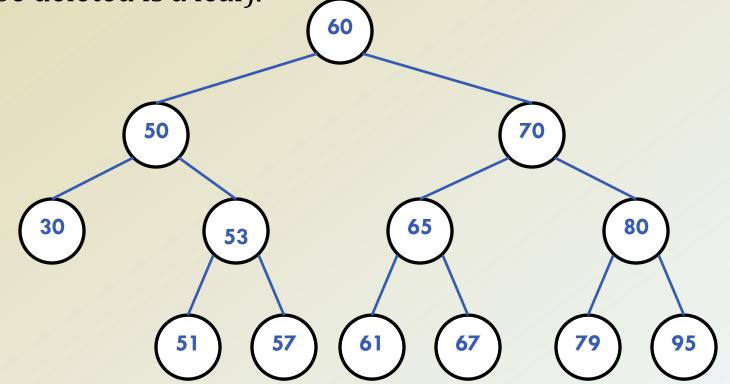
Delete a node

- After deleting an item, the resulting binary tree must be a binary search tree.
 - 1. Find the node to be deleted.
 - 2. Delete the node from the tree.

Delete (Case 1)

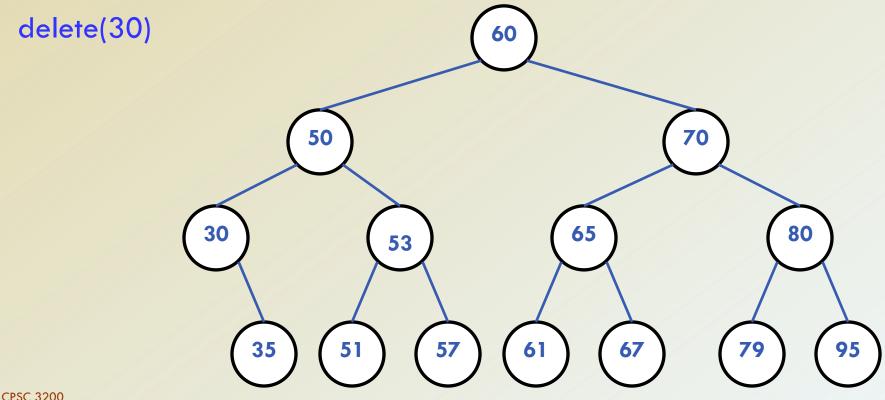
The node to be deleted has no left and right subtree (the node to be deleted is a leaf).

delete(30)



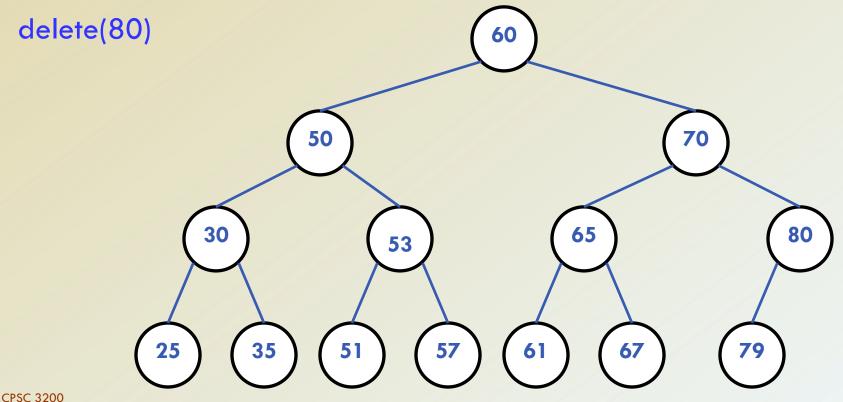
Delete (Case 2)

 The node to be deleted has no left subtree (the left subtree is empty but it has a nonempty right subtree).



Delete (Case 3)

• The node to be deleted has no right subtree (the right subtree is empty but it has a nonempty left subtree).



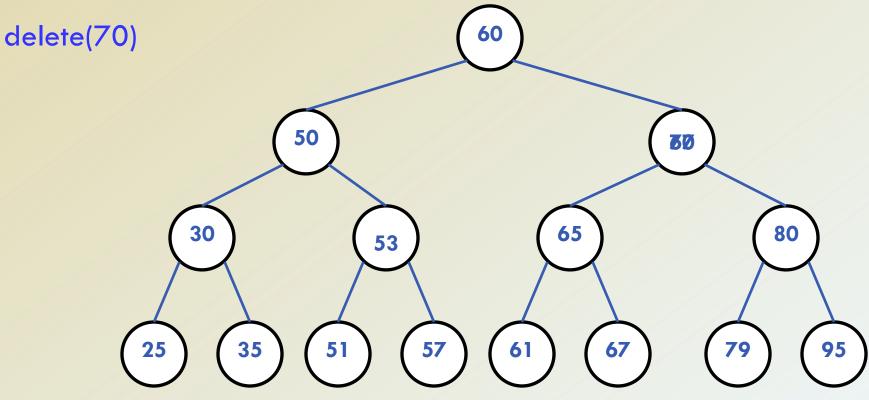
Delete (Case 4)

The node to be deleted has nonempty left and right subtree.



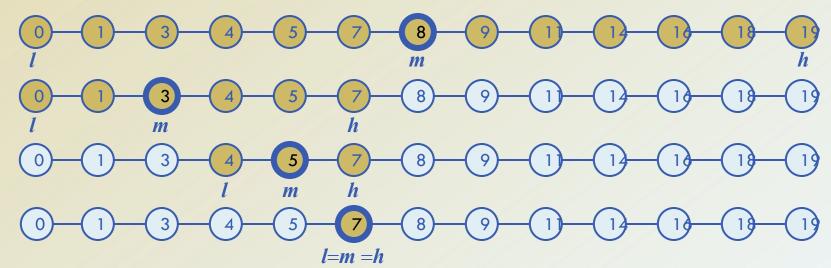
Delete (Case 4)

The node to be deleted has nonempty left and right subtree.



Binary Search

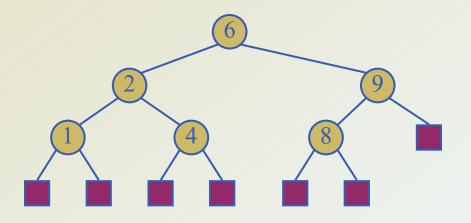
- Binary search can perform operations get, floorEntry and ceilingEntry on an ordered map implemented by means of an array-based sequence, sorted by key
 - similar to the high-low game
 - at each step, the number of candidate items is halved
 - terminates after O(log n) steps
- Example: find(7)



Binary Search Trees

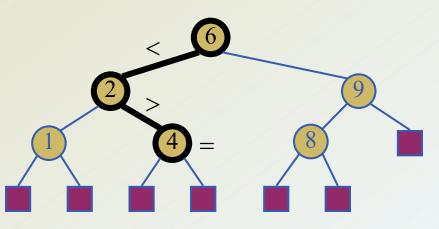
- A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes and satisfying the following property:
 - Let *u*, *v*, and *w* be three nodes such that *u* is in the left subtree of *v* and *w* is in the right subtree of *v*. We have *key*(*u*) ≤ *key*(*v*) ≤ *key*(*w*)
- External nodes do not store items.

 An inorder traversal of a binary search trees visits the keys in increasing order.



Search

- To search for a key k, we trace a downward path starting at the root.
- The next node visited depends on the comparison of *k* with the key of the current node.
- If we reach a leaf, the key is not found.
- **Example:** get(4):
 - Call TreeSearch(4,root)



End of Chapter 7