


• The	Priority	Queue	Abstract	Data	Type.
• Heaps.
• Adaptable	Priority	Queue.
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• A	priority	queue	stores	a	
collection	of	entries.

• Each	entry is	a	pair
(key,	value).

• Main	methods	of	the	Priority	
Queue	ADT:
• insert(k,	x)
inserts	an	entry	with	key	k	
and	value	x.
• removeMin(	)
removes	and	returns	the	
entry	with	smallest	key.

• Additional	methods:
• min(	)
returns,	but	does	not	
remove,	an	entry	with	
smallest	key.
• size(	),	isEmpty(	)

• Applications:
• Standby	flyers.
• Auctions.
• Stock	market.
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• Keys	in	a	priority	queue	
can	be	arbitrary	objects	
on	which	an	order	is	
defined.

• Two	distinct	entries	in	a	
priority	queue	can	have	
the	same	key.

• Mathematical	concept	of	total	
order	relation	£
• Reflexive	property:
x	£ x

• Antisymmetric property:
x	£ y Ù y	£ x	Þ x	= y

• Transitive	property:
x	£ y Ù y	£ z	Þ x	£ z
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• An	entry	in	a	priority	queue	is	
simply	a	key-value	pair.

• Priority	queues	store	entries	to	
allow	for	efficient	insertion	
and	removal	based	on	keys.

• Methods:
• getKey: returns	the	key	for	
this	entry.
• getValue: returns	the	value	
associated	with	this	entry.

As	a	Java	interface:
/** 

* Interface for a key

*value pair entry 

**/

public interface  Entry<K,V>  
{

public  K getKey();
public  V getValue();

}
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• A	comparator	encapsulates	the	
action	of	comparing	two	
objects	according	to	a	given	
total	order	relation.

• A	generic	priority	queue	uses	
an	auxiliary	comparator.

• The	comparator	is	external	to	
the	keys	being	compared.

• When	the	priority	queue	needs	
to	compare	two	keys,	it	uses	its	
comparator.

• Primary	method	of	the	
Comparator	ADT

• compare(x,	y):	returns	an	
integer	i such	that	
• i <	0	if	a <	b,
• i =	0	if	a =	b
• i >	0	if	a >	b
• An	error	occurs	if	a and	b
cannot	be	compared.
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• We	can	use	a	priority	queue	to	
sort	a	set	of	comparable	
elements
1. Insert	the	elements	one	by	
one	with	a	series	of	insert
operations.

2. Remove	the	elements	in	
sorted	order	with	a	series	
of	removeMin operations.

• The	running	time	of	this	
sorting	method	depends	on	the	
priority	queue	implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for 
the elements of S
Output sequence S sorted  in 
increasing order according to C
P ¬ priority queue with 

comparator C
while !S.isEmpty ()

e ¬ S.removeFirst ()
P.insert (e, Æ)

while !P.isEmpty()
e ¬ P.removeMin().getKey()
S.addLast(e)
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• Implementation	with	an	
unsorted	list

• Performance:
• insert takes	O(1)	time	since	
we	can	insert	the	item	at	the	
beginning	or	end	of	the	
sequence.
• removeMin and	min take	
O(n)	time	since	we	have	to	
traverse	the	entire	sequence	
to	find	the	smallest	key.	

• Implementation	with	a	sorted	
list

• Performance:
• insert takes	O(n)	time	since	
we	have	to	find	the	place	
where	to	insert	the	item
• removeMin and	min take	
O(1)	time,	since	the	smallest	
key	is	at	the	beginning

4 5 2 3 1 1 2 3 4 5
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• Selection-sort	is	the	variation	of	PQ-sort	where	the	priority	
queue	is	implemented	with	an	unsorted sequence.

• Running	time	of	Selection-sort:
1. Inserting	the	elements	into	the	priority	queue	with	n
insert operations	takes	O(n)	time.

2. Removing	the	elements	in	sorted	order	from	the	priority	
queue	with	n removeMin operations	takes	time	
proportional	to

1	+	2	+	…+	n

• Selection-sort	runs	in	O(n2)	time	
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Sequence	S Priority	Queue	P
Input: (7,4,8,2,5,3,9) (	)

Phase	1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
.. .. ..
(g) (	) (7,4,8,2,5,3,9)

Phase	2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) (	)
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• Insertion-sort	is	the	variation	of	PQ-sort	where	the	priority	
queue	is	implemented	with	a	sorted sequence.

• Running	time	of	Insertion-sort:
1. Inserting	the	elements	into	the	priority	queue	with	n

insert operations	takes	time	proportional	to
1	+	2	+	…+	n

2. Removing	the	elements	in	sorted	order	from	the	priority	
queue	with		a	series	of	n removeMin operations	takes	
O(n)	time.

• Insertion-sort	runs	in	O(n2)	time	
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Sequence	S Priority	queue	P
Input: (7,4,8,2,5,3,9) (	)

Phase	1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) (	) (2,3,4,5,7,8,9)

Phase	2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
.. .. ..
(g) (2,3,4,5,7,8,9) (	)
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• A	heap	is	a	binary	tree	storing	
keys	at	its	nodes	and	satisfying	
the	following	properties:

• Heap-Order: for	every	internal	
node	v	other	than	the	root,
key(v)	³ key(parent(v))

• Complete	Binary	Tree: let	h be	
the	height	of	the	heap
• for	i =	0,	…	,	h	- 1,	there	are	2i nodes	
of	depth	i

• at	depth	h - 1,	the	internal	nodes	
are	to	the	left	of	the	external	nodes.

2

65

79

• The last	node of	a	heap	is	the	
rightmost	node	of	maximum	
depth.

last node
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• Theorem: A	heap	storing	n keys	has	height	O(log	n)
Proof:	(we	apply	the	complete	binary	tree	property)
• Let	h be	the	height	of	a	heap	storing	n	keys
• Since	there	are	2i keys	at	depth	i = 0,	…	,	h	- 1	and	at	least	one	
key	at	depth	h,	we	have	n ³ 1	+	2	+ 4	+ …	+ 2h-1	 +	1
• Thus,	n ³ 2h ,	i.e.,	h £ log	n

1

2

2h-1

1

keys
0

1

h-1

h

depth
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• We	can	use	a	heap	to	implement	a	priority	queue.
• We	store	a	(key,	element)	item	at	each	internal	node.
• We	keep	track	of	the	position	of	the	last	node.

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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• Method	insertItem of	the	
priority	queue	ADT	corresponds	
to	the	insertion of	a	key	k to	the	
heap.

• The	insertion	algorithm	consists	
of	three	steps:
• Find	the	insertion	node	z (the	
new	last	node).
• Store	k at	z.
• Restore	the	heap-order	
property	(discussed	next).

2

65

79

insertion node
2

65

79 1

z

z
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• After	the	insertion	of	a	new	key	k,	the	heap-order	property	may	be	
violated.

• Algorithm	upheap restores	the	heap-order	property	by	swapping	k
along	an	upward	path	from	the	insertion	node.

• Upheap terminates	when	the	key	k reaches	the	root	or	a	node	
whose	parent	has	a	key	smaller	than	or	equal	to	k

• Since	a	heap	has	height	O(log	n),	upheap runs	in	O(log	n)	time.

2

15

79 6z

1

25

79 6z
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• Method	removeMin of	the	
priority	queue	ADT	corresponds	
to	the	removal of	the	root	key	
from	the	heap.

• The	removal	algorithm	consists	
of	three	steps:
• Replace	the	root	key	with	the	
key	of	the	last	node	w
• Remove	w
• Restore	the	heap-order	
property	(discussed	next)

2

65

79

last node

w

7

65

9
w

new last node
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• After	replacing	the	root	key	with	the	key	k of	the	last	node,	the	
heap-order	property	may	be	violated.

• Algorithm	downheap restores	the	heap-order	property	by	
swapping	key	k along	a	downward	path	from	the	root.

• Upheap terminates	when	key	k reaches	a	leaf	or	a	node	whose	
children	have	keys	greater	than	or	equal	to	k

• Since	a	heap	has	height	O(log	n),	downheap runs	in	O(log	n)	time

7

65

9
w

5

67

9
w
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• Consider	a	priority	queue	with	
n items	implemented	by	means	
of	a	heap
• the	space	used	is	O(n)
• methods	insert and	
removeMin take	O(log	n)	
time.
• methods	size,	isEmpty,	and	
min take	time	O(1)	time

• Using	a	heap-based	priority	
queue,	we	can	sort	a	sequence	
of	n elements	in	O(n log	n)	
time.

• The	resulting	algorithm	is	
called	heap-sort

• Heap-sort	is	much	faster	than	
quadratic	sorting	algorithms,	
such	as	insertion-sort and	
selection-sort.
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• We	are	given	two	two	
heaps	and	a	key	k

• We	create	a	new	heap	
with	the	root	node	
storing	k and	with	the	
two	heaps	as	subtrees

• We	perform	downheap	
to	restore	the	heap-
order	property	

7

3
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2
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67
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• We	can	construct	a	heap	storing	
n given	keys	in	using	a	bottom-
up	construction	with	log	n
phases.

• In	phase	i,	pairs	of	heaps	with	2i	-
1	keys	are	merged	into	heaps	
with	2i+1-1	keys

2i -1 2i -1

2i+1-1
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Algorithm BottomUpHeap(S):
Input:	A	list	L	storing	n	=	2h+1−1	entries
Output:	A	heap	T	storing	the	entries	in	L.
if S.isEmpty()	then

return an	empty	heap
e	←	L.remove(L.first())
Split	L	into	two	lists,	L1	and	L2,	each	of	size	(n−1)/2
T1	←	BottomUpHeap(L1)
T2	←	BottomUpHeap(L2)
Create	binary	tree	T	with	root	r	storing	e,	left	subtree T1,	and	
right	subtree T2
Perform	a	down-heap	bubbling	from	the	root	r	of	T,	if	necessary
return T
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• We	visualize	the	worst-case	time	of	a	downheapwith	a	proxy	path	
that	goes	first	right	and	then	repeatedly	goes	left	until	the	bottom	of	
the	heap	(this	path	may	differ	from	the	actual	downheap path)

• Since	each	node	is	traversed	by	at	most	two	proxy	paths,	the	total	
number	of	nodes	of	the	proxy	paths	is	O(n)	

• Thus,	bottom-up	heap	construction	runs	in	O(n)	time	
• Bottom-up	heap	construction	is	faster	than	n successive	insertions	
and	speeds	up	the	first	phase	of	heap-sort.
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• An	entry	stores	a	(key,	value)	
pair

• Entry	ADT	methods:
• getKey(	):	returns	the	key	
associated	with	this	entry
• getValue(	):	returns	the	value	
paired	with	the	key	
associated	with	this	entry

• Priority	Queue	ADT:
• insert(k,	x)
inserts	an	entry	with	key	
k	and	value	x
• removeMin(	)
removes	and	returns	the	
entry	with	smallest	key
• min(	)
returns,	but	does	not	
remove,	an	entry	with	
smallest	key
• size(	),	isEmpty(	)
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• remove(e):	Remove	from	P and	return	entry	e.

• replaceKey(e,k):	Replace	with	k	and	return	the	key	of	
entry	e	of	P;	an	error	condition	occurs	if	k is	invalid	(that	is,	
k cannot	be	compared	with	other	keys).

• replaceValue(e,x):	Replace	with	x and	return	the	value	of	
entry	e of	P.
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Operation Output P
insert(5,A) e1 (5,A)
insert(3,B) e2 (3,B),(5,A)
insert(7,C) e3 (3,B),(5,A),(7,C)
min(	) e2 (3,B),(5,A),(7,C)
key(e2) 3 (3,B),(5,A),(7,C)
remove(e1) e1 (3,B),(7,C)
replaceKey(e2,9) 3 (7,C),(9,B)
replaceValue(e3,D) C (7,D),(9,B)
remove(e2) e2 (7,D)
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Running	times	of	the	methods	of	an	adaptable	priority	queue	of	size	n,	realized	by	
means	of	an	unsorted	list,	sorted	list,	and	heap,	respectively.
The	space	requirement	is	O(n)
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