

• The	Priority	Queue	Abstract	Data	Type.
• Heaps.
• Adaptable	Priority	Queue.

2
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia

• A	priority	queue	stores	a	
collection	of	entries.

• Each	entry is	a	pair
(key,	value).

• Main	methods	of	the	Priority	
Queue	ADT:
• insert(k,	x)
inserts	an	entry	with	key	k	
and	value	x.
• removeMin()
removes	and	returns	the	
entry	with	smallest	key.

• Additional	methods:
• min()
returns,	but	does	not	
remove,	an	entry	with	
smallest	key.
• size(),	isEmpty()

• Applications:
• Standby	flyers.
• Auctions.
• Stock	market.

© 2010 Goodrich, Tamassia
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 3

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 4© 2010 Goodrich, Tamassia

• Keys	in	a	priority	queue	
can	be	arbitrary	objects	
on	which	an	order	is	
defined.

• Two	distinct	entries	in	a	
priority	queue	can	have	
the	same	key.

• Mathematical	concept	of	total	
order	relation	£
• Reflexive	property:
x	£ x

• Antisymmetric property:
x	£ y Ù y	£ x	Þ x	= y

• Transitive	property:
x	£ y Ù y	£ z	Þ x	£ z

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 5© 2010 Goodrich, Tamassia

• An	entry	in	a	priority	queue	is	
simply	a	key-value	pair.

• Priority	queues	store	entries	to	
allow	for	efficient	insertion	
and	removal	based	on	keys.

• Methods:
• getKey: returns	the	key	for	
this	entry.
• getValue: returns	the	value	
associated	with	this	entry.

As	a	Java	interface:
/**

* Interface for a key

*value pair entry

**/

public interface Entry<K,V>
{

public K getKey();
public V getValue();

}

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 6© 2010 Goodrich, Tamassia

• A	comparator	encapsulates	the	
action	of	comparing	two	
objects	according	to	a	given	
total	order	relation.

• A	generic	priority	queue	uses	
an	auxiliary	comparator.

• The	comparator	is	external	to	
the	keys	being	compared.

• When	the	priority	queue	needs	
to	compare	two	keys,	it	uses	its	
comparator.

• Primary	method	of	the	
Comparator	ADT

• compare(x,	y):	returns	an	
integer	i such	that	
• i <	0	if	a <	b,
• i =	0	if	a =	b
• i >	0	if	a >	b
• An	error	occurs	if	a and	b
cannot	be	compared.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 7© 2010 Goodrich, Tamassia

• We	can	use	a	priority	queue	to	
sort	a	set	of	comparable	
elements
1. Insert	the	elements	one	by	
one	with	a	series	of	insert
operations.

2. Remove	the	elements	in	
sorted	order	with	a	series	
of	removeMin operations.

• The	running	time	of	this	
sorting	method	depends	on	the	
priority	queue	implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C for
the elements of S
Output sequence S sorted in
increasing order according to C
P ¬ priority queue with

comparator C
while !S.isEmpty ()

e ¬ S.removeFirst ()
P.insert (e, Æ)

while !P.isEmpty()
e ¬ P.removeMin().getKey()
S.addLast(e)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 8© 2010 Goodrich, Tamassia

• Implementation	with	an	
unsorted	list

• Performance:
• insert takes	O(1)	time	since	
we	can	insert	the	item	at	the	
beginning	or	end	of	the	
sequence.
• removeMin and	min take	
O(n)	time	since	we	have	to	
traverse	the	entire	sequence	
to	find	the	smallest	key.	

• Implementation	with	a	sorted	
list

• Performance:
• insert takes	O(n)	time	since	
we	have	to	find	the	place	
where	to	insert	the	item
• removeMin and	min take	
O(1)	time,	since	the	smallest	
key	is	at	the	beginning

4 5 2 3 1 1 2 3 4 5

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 9© 2010 Goodrich, Tamassia

• Selection-sort	is	the	variation	of	PQ-sort	where	the	priority	
queue	is	implemented	with	an	unsorted sequence.

• Running	time	of	Selection-sort:
1. Inserting	the	elements	into	the	priority	queue	with	n
insert operations	takes	O(n)	time.

2. Removing	the	elements	in	sorted	order	from	the	priority	
queue	with	n removeMin operations	takes	time	
proportional	to

1	+	2	+	…+	n

• Selection-sort	runs	in	O(n2)	time	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 10© 2010 Goodrich, Tamassia

Sequence	S Priority	Queue	P
Input: (7,4,8,2,5,3,9) ()

Phase	1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase	2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 11© 2010 Goodrich, Tamassia

• Insertion-sort	is	the	variation	of	PQ-sort	where	the	priority	
queue	is	implemented	with	a	sorted sequence.

• Running	time	of	Insertion-sort:
1. Inserting	the	elements	into	the	priority	queue	with	n

insert operations	takes	time	proportional	to
1	+	2	+	…+	n

2. Removing	the	elements	in	sorted	order	from	the	priority	
queue	with		a	series	of	n removeMin operations	takes	
O(n)	time.

• Insertion-sort	runs	in	O(n2)	time	

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 12© 2010 Goodrich, Tamassia

Sequence	S Priority	queue	P
Input: (7,4,8,2,5,3,9) ()

Phase	1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase	2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 13© 2010 Goodrich, Tamassia

• A	heap	is	a	binary	tree	storing	
keys	at	its	nodes	and	satisfying	
the	following	properties:

• Heap-Order: for	every	internal	
node	v	other	than	the	root,
key(v)	³ key(parent(v))

• Complete	Binary	Tree: let	h be	
the	height	of	the	heap
• for	i =	0,	…	,	h	- 1,	there	are	2i nodes	
of	depth	i

• at	depth	h - 1,	the	internal	nodes	
are	to	the	left	of	the	external	nodes.

2

65

79

• The last	node of	a	heap	is	the	
rightmost	node	of	maximum	
depth.

last node
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 14© 2010 Goodrich, Tamassia

• Theorem: A	heap	storing	n keys	has	height	O(log	n)
Proof:	(we	apply	the	complete	binary	tree	property)
• Let	h be	the	height	of	a	heap	storing	n	keys
• Since	there	are	2i keys	at	depth	i = 0,	…	,	h	- 1	and	at	least	one	
key	at	depth	h,	we	have	n ³ 1	+	2	+ 4	+ …	+ 2h-1	 +	1
• Thus,	n ³ 2h ,	i.e.,	h £ log	n

1

2

2h-1

1

keys
0

1

h-1

h

depth

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 15© 2010 Goodrich, Tamassia

• We	can	use	a	heap	to	implement	a	priority	queue.
• We	store	a	(key,	element)	item	at	each	internal	node.
• We	keep	track	of	the	position	of	the	last	node.

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 16© 2010 Goodrich, Tamassia

• Method	insertItem of	the	
priority	queue	ADT	corresponds	
to	the	insertion of	a	key	k to	the	
heap.

• The	insertion	algorithm	consists	
of	three	steps:
• Find	the	insertion	node	z (the	
new	last	node).
• Store	k at	z.
• Restore	the	heap-order	
property	(discussed	next).

2

65

79

insertion node
2

65

79 1

z

z

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 17© 2010 Goodrich, Tamassia

• After	the	insertion	of	a	new	key	k,	the	heap-order	property	may	be	
violated.

• Algorithm	upheap restores	the	heap-order	property	by	swapping	k
along	an	upward	path	from	the	insertion	node.

• Upheap terminates	when	the	key	k reaches	the	root	or	a	node	
whose	parent	has	a	key	smaller	than	or	equal	to	k

• Since	a	heap	has	height	O(log	n),	upheap runs	in	O(log	n)	time.

2

15

79 6z

1

25

79 6z

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 18© 2010 Goodrich, Tamassia

• Method	removeMin of	the	
priority	queue	ADT	corresponds	
to	the	removal of	the	root	key	
from	the	heap.

• The	removal	algorithm	consists	
of	three	steps:
• Replace	the	root	key	with	the	
key	of	the	last	node	w
• Remove	w
• Restore	the	heap-order	
property	(discussed	next)

2

65

79

last node

w

7

65

9
w

new last node
CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 19© 2010 Goodrich, Tamassia

• After	replacing	the	root	key	with	the	key	k of	the	last	node,	the	
heap-order	property	may	be	violated.

• Algorithm	downheap restores	the	heap-order	property	by	
swapping	key	k along	a	downward	path	from	the	root.

• Upheap terminates	when	key	k reaches	a	leaf	or	a	node	whose	
children	have	keys	greater	than	or	equal	to	k

• Since	a	heap	has	height	O(log	n),	downheap runs	in	O(log	n)	time

7

65

9
w

5

67

9
w

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 20© 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 21© 2010 Goodrich, Tamassia

• Consider	a	priority	queue	with	
n items	implemented	by	means	
of	a	heap
• the	space	used	is	O(n)
• methods	insert and	
removeMin take	O(log	n)	
time.
• methods	size,	isEmpty,	and	
min take	time	O(1)	time

• Using	a	heap-based	priority	
queue,	we	can	sort	a	sequence	
of	n elements	in	O(n log	n)	
time.

• The	resulting	algorithm	is	
called	heap-sort

• Heap-sort	is	much	faster	than	
quadratic	sorting	algorithms,	
such	as	insertion-sort and	
selection-sort.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 22© 2010 Goodrich, Tamassia

CPSC 3200 University of Tennessee at Chattanooga
– Summer 2013 23

• We	are	given	two	two	
heaps	and	a	key	k

• We	create	a	new	heap	
with	the	root	node	
storing	k and	with	the	
two	heaps	as	subtrees

• We	perform	downheap	
to	restore	the	heap-
order	property	

7

3

58

2

64

3

58

2

64

2

3

58

4

67

© 2010 Goodrich, Tamassia

• We	can	construct	a	heap	storing	
n given	keys	in	using	a	bottom-
up	construction	with	log	n
phases.

• In	phase	i,	pairs	of	heaps	with	2i	-
1	keys	are	merged	into	heaps	
with	2i+1-1	keys

2i -1 2i -1

2i+1-1

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 24© 2010 Goodrich, Tamassia

1516 124 76 2023

25

1516

5

124

11

76

27

2023

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 25© 2010 Goodrich, Tamassia

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 26© 2010 Goodrich, Tamassia

7

15

2516

4

125

8

6

911

20

2327

4

15

2516

5

127

6

8

911

20

2327

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 27© 2010 Goodrich, Tamassia

4

15

2516

5

127

10

6

8

911

20

2327

5

15

2516

7

1210

4

6

8

911

20

2327

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 28© 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 29

Algorithm BottomUpHeap(S):
Input:	A	list	L	storing	n	=	2h+1−1	entries
Output:	A	heap	T	storing	the	entries	in	L.
if S.isEmpty()	then

return an	empty	heap
e	←	L.remove(L.first())
Split	L	into	two	lists,	L1	and	L2,	each	of	size	(n−1)/2
T1	←	BottomUpHeap(L1)
T2	←	BottomUpHeap(L2)
Create	binary	tree	T	with	root	r	storing	e,	left	subtree T1,	and	
right	subtree T2
Perform	a	down-heap	bubbling	from	the	root	r	of	T,	if	necessary
return T

© 2010 Goodrich, Tamassia

• We	visualize	the	worst-case	time	of	a	downheapwith	a	proxy	path	
that	goes	first	right	and	then	repeatedly	goes	left	until	the	bottom	of	
the	heap	(this	path	may	differ	from	the	actual	downheap path)

• Since	each	node	is	traversed	by	at	most	two	proxy	paths,	the	total	
number	of	nodes	of	the	proxy	paths	is	O(n)	

• Thus,	bottom-up	heap	construction	runs	in	O(n)	time	
• Bottom-up	heap	construction	is	faster	than	n successive	insertions	
and	speeds	up	the	first	phase	of	heap-sort.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 30© 2010 Goodrich, Tamassia

• An	entry	stores	a	(key,	value)	
pair

• Entry	ADT	methods:
• getKey():	returns	the	key	
associated	with	this	entry
• getValue():	returns	the	value	
paired	with	the	key	
associated	with	this	entry

• Priority	Queue	ADT:
• insert(k,	x)
inserts	an	entry	with	key	
k	and	value	x
• removeMin()
removes	and	returns	the	
entry	with	smallest	key
• min()
returns,	but	does	not	
remove,	an	entry	with	
smallest	key
• size(),	isEmpty()

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 31© 2010 Goodrich, Tamassia

• remove(e):	Remove	from	P and	return	entry	e.

• replaceKey(e,k):	Replace	with	k	and	return	the	key	of	
entry	e	of	P;	an	error	condition	occurs	if	k is	invalid	(that	is,	
k cannot	be	compared	with	other	keys).

• replaceValue(e,x):	Replace	with	x and	return	the	value	of	
entry	e of	P.

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 32© 2010 Goodrich, Tamassia

Operation Output P
insert(5,A) e1 (5,A)
insert(3,B) e2 (3,B),(5,A)
insert(7,C) e3 (3,B),(5,A),(7,C)
min() e2 (3,B),(5,A),(7,C)
key(e2) 3 (3,B),(5,A),(7,C)
remove(e1) e1 (3,B),(7,C)
replaceKey(e2,9) 3 (7,C),(9,B)
replaceValue(e3,D) C (7,D),(9,B)
remove(e2) e2 (7,D)

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 33© 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 34

Running	times	of	the	methods	of	an	adaptable	priority	queue	of	size	n,	realized	by	
means	of	an	unsorted	list,	sorted	list,	and	heap,	respectively.
The	space	requirement	is	O(n)

© 2010 Goodrich, Tamassia

CPSC 3200
University of Tennessee at Chattanooga – Summer 2013 35

