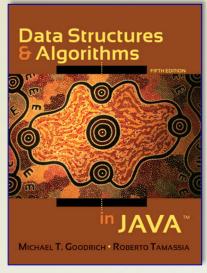
Data Structure & Algorithms in

JAVA

5th edition Michael T. Goodrich Roberto Tamassia



Chapter 8: Heaps and Priority Queues

CPSC 3200

Algorithm Analysis and Advanced Data Structure

Chapter Topics

- The Priority Queue Abstract Data Type.
- Heaps.
- Adaptable Priority Queue.

Priority Queue ADT

- A priority queue stores a collection of entries.
- Each entry is a pair (key, value).
- Main methods of the Priority Queue ADT:
 - insert(k, x)
 inserts an entry with key k
 and value x.
 - removeMin()
 removes and returns the
 entry with smallest key.

- Additional methods:
 - min()
 returns, but does not
 remove, an entry with
 smallest key.
 - size(), isEmpty()
- Applications:
 - Standby flyers.
 - Auctions.
 - Stock market.

Operation	Output	Priority Queue
insert(5,A)	$e_1[=(5,A)]$	$\{(5,A)\}$
insert(9,C)	$e_2[=(9,C)]$	$\{(5,A),(9,C)\}$
insert(3,B)	$e_3[=(3,B)]$	$\{(3,B),(5,A),(9,C)\}$
insert(7,D)	$e_4[=(7,D)]$	$\{(3,B),(5,A),(7,D),(9,C)\}$
min()	e_3	$\{(3,B),(5,A),(7,D),(9,C)\}$
removeMin()	e_3	$\{(5,A),(7,D),(9,C)\}$
size()	3	$\{(5,A),(7,D),(9,C)\}$
removeMin()	e_1	$\{(7,D),(9,C)\}$
removeMin()	e_4	$\{(9,C)\}$
removeMin()	e_2	{}

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Two distinct entries in a priority queue can have the same key.

- Mathematical concept of total order relation ≤
 - Reflexive property:
 x < x
 - Antisymmetric property: $x \le y \land y \le x \Rightarrow x = y$
 - Transitive property: $x \le y \land y \le z \Rightarrow x \le z$

Entry ADT

- An entry in a priority queue is simply a key-value pair.
- Priority queues store entries to allow for efficient insertion and removal based on keys.
- Methods:
 - getKey: returns the key for this entry.
 - **getValue:** returns the value associated with this entry.

As a Java interface:

```
/**
  * Interface for a key
  *value pair entry

**/
public interface Entry<K,V>
{
    public K getKey();
    public V getValue();
```

Comparator ADT

- A comparator encapsulates the action of comparing two objects according to a given total order relation.
- A generic priority queue uses an auxiliary comparator.
- The comparator is external to the keys being compared.
- When the priority queue needs to compare two keys, it uses its comparator.

- Primary method of the Comparator ADT
- compare(x, y): returns an integer i such that
 - i < 0 if a < b,
 - i = 0 if a = b
 - i > 0 if a > b
 - An error occurs if a and b cannot be compared.

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of **insert** operations.
 - 2. Remove the elements in sorted order with a series of **removeMin** operations.
- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S, C)
    Input sequence S, comparator C for
    the elements of S
    Output sequence S sorted in
    increasing order according to C
    P \leftarrow priority queue with
         comparator C
    while !S.isEmpty ()
         e \leftarrow S.removeFirst()
         P.insert (e, \emptyset)
    while !P.isEmpty()
         e \leftarrow P.removeMin().getKey()
         S.addLast(e)
```

Sequence-based Priority Queue

 Implementation with an unsorted list

- Performance:
 - **insert** takes **O**(1) time since we can insert the item at the beginning or end of the sequence.
 - removeMin and min take O(n) time since we have to traverse the entire sequence to find the smallest key.

Implementation with a sorted list

- Performance:
 - insert takes O(n) time since we have to find the place where to insert the item
 - removeMin and min take
 O(1) time, since the smallest key is at the beginning

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence.
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time.
 - 2. Removing the elements in sorted order from the priority queue with *n* removeMin operations takes time proportional to

$$1 + 2 + ... + n$$

• Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

(2,3,4,5)

(2,3,4,5,7)

(2,3,4,5,7,8)

(2,3,4,5,7,8,9)

	Sequence S	Priority Queue P
Input:	(7,4,8,2,5,3,9)	()
Phase 1		
(a)	(4,8,2,5,3,9)	(7)
(b)	(8,2,5,3,9)	(7,4)
(g)	()	(7,4,8,2,5,3,9)
Phase 2		
(a)	(2)	(7,4,8,5,3,9)
(b)	(2,3)	(7,4,8,5,9)
(c)	(2,3,4)	(7,8,5,9)

(d)

(e)

(f)

(g)

(7,8,9)

(8,9)

(9)

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence.
- Running time of Insertion-sort:
 - Inserting the elements into the priority queue with n
 insert operations takes time proportional to

$$1 + 2 + ... + n$$

- 2. Removing the elements in sorted order from the priority queue with a series of *n* removeMin operations takes *O*(*n*) time.
- Insertion-sort runs in $O(n^2)$ time

Insertion-Sort Example

Input:

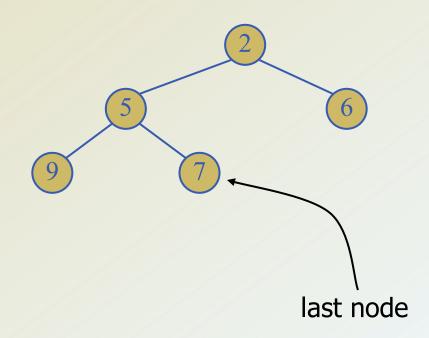
Phase 1

Phase 2

Heaps

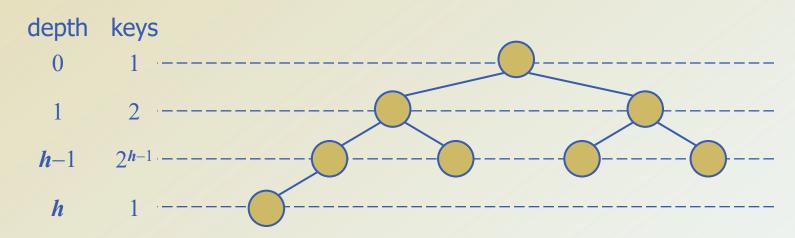
- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
 - Complete Binary Tree: let h be the height of the heap
 - for *i* = 0, ..., *h* 1, there are 2ⁱ nodes
 of depth *i*
 - at depth h 1, the internal nodes
 are to the left of the external nodes.

 The last node of a heap is the rightmost node of maximum depth.



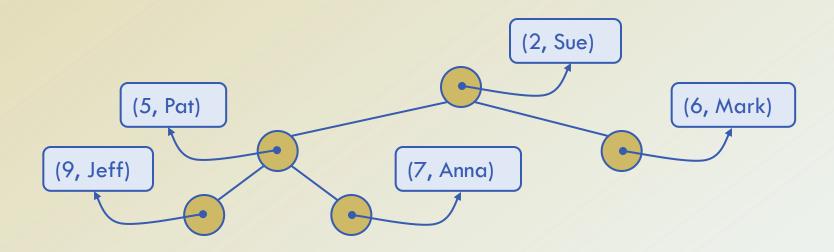
Height of a Heap

- Theorem: A heap storing n keys has height O(log n)
 Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h 1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$



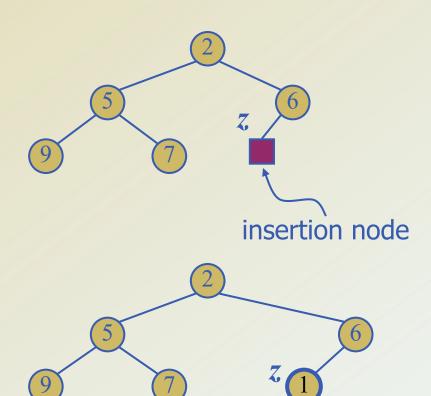
Heaps and Priority Queues

- We can use a heap to implement a priority queue.
- We store a (key, element) item at each internal node.
- We keep track of the position of the last node.



Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps:
 - Find the insertion node z (the new last node).
 - Store k at z.
 - Restore the heap-order property (discussed next).



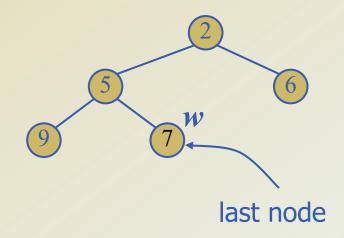
© 2010 Goodrich, Tamassia

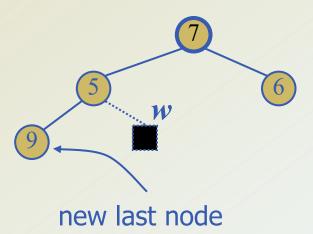
Upheap

- After the insertion of a new key k, the heap-order property may be violated.
- Algorithm upheap restores the heap-order property by swapping k
 along an upward path from the insertion node.
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.

Removal from a Heap (§ 7.3.3)

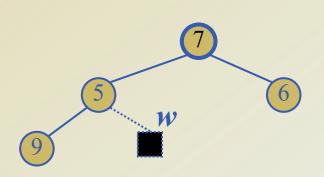
- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

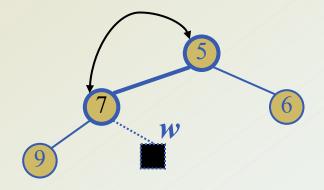




Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root.
- Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time





Analysis

Operation	Time	
size, isEmpty	O(1)	
min,	O(1)	
insert	$O(\log n)$	
removeMin	$O(\log n)$	

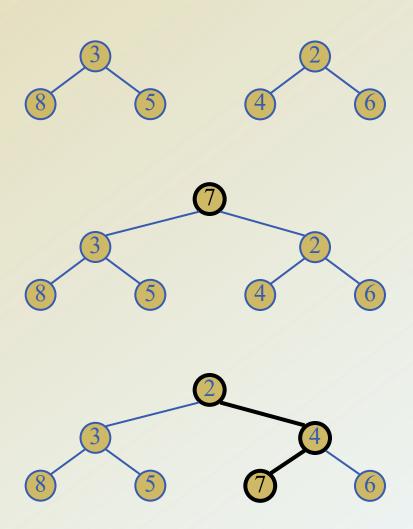
Heap-Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time.
 - methods size, isEmpty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of *n* elements in *O*(*n* log *n*) time.
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort.

Merging Two Heaps

- We are given two two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heaporder property

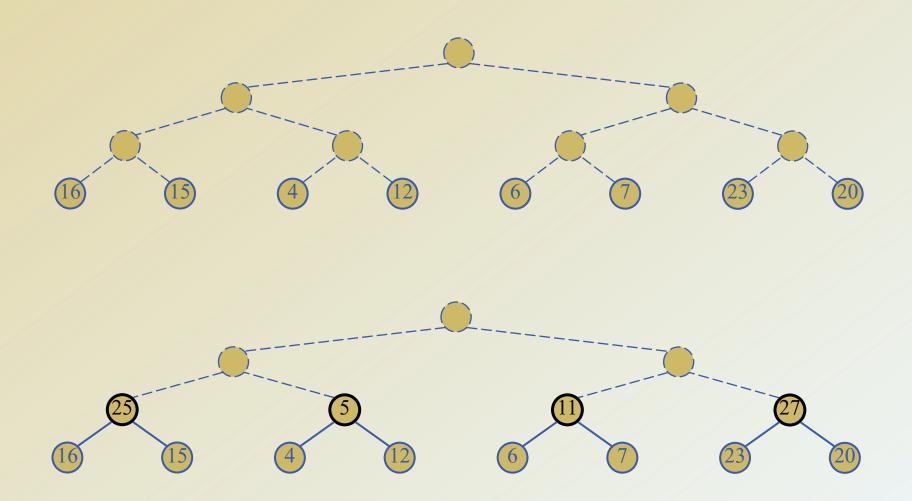


Bottom-up Heap Construction

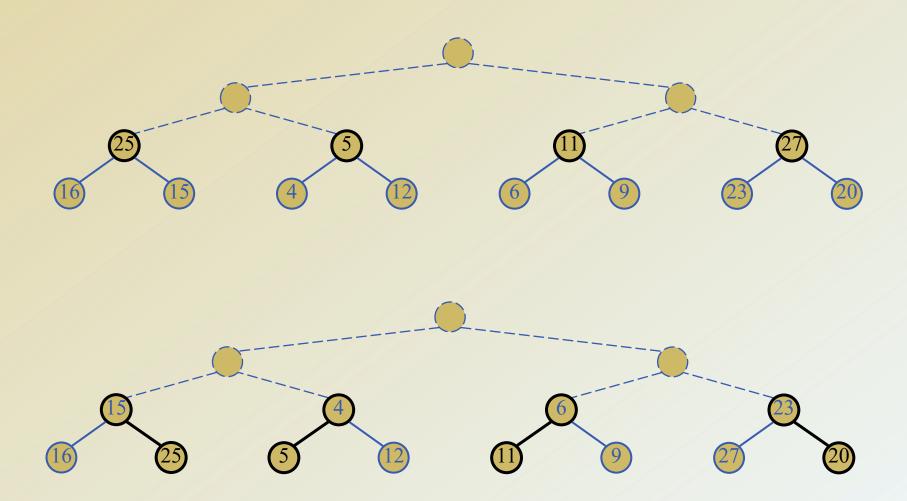
- We can construct a heap storing

 n given keys in using a bottom-up construction with log n
 phases.
- In phase *i*, pairs of heaps with 2ⁱ 1 keys are merged into heaps with 2ⁱ⁺¹-1 keys

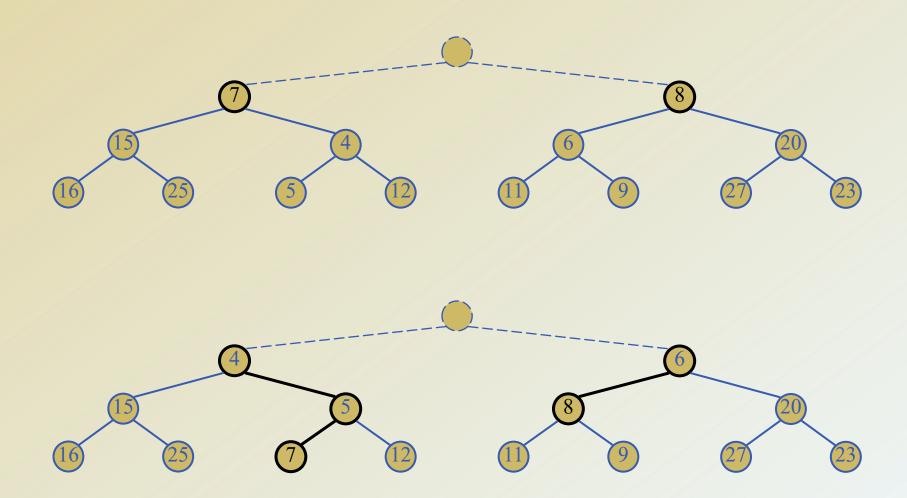
Example



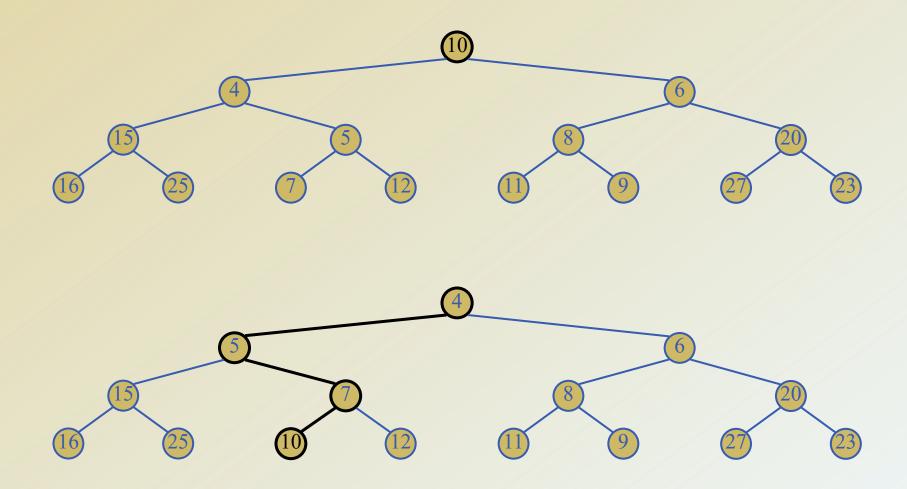
Example (contd.)



Example (contd.)



Example (end)



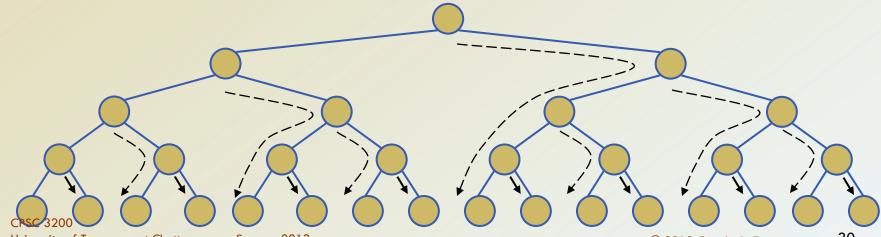
Recursive Bottom-Up Heap Construction

```
Algorithm BottomUpHeap(S):
    Input: A list L storing n = 2h+1–1 entries
    Output: A heap T storing the entries in L.
    if S.isEmpty() then
        return an empty heap
    e \leftarrow L.remove(L.first())
    Split L into two lists, L1 and L2, each of size (n-1)/2
   T1 \leftarrow BottomUpHeap(L1)
    T2 \leftarrow BottomUpHeap(L2)
    Create binary tree T with root r storing e, left subtree T1, and
    right subtree T2
    Perform a down-heap bubbling from the root r of T, if necessary
```

return T

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n)
- Thus, bottom-up heap construction runs in O(n) time
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.



Entry and Priority Queue ADTs

- An entry stores a (key, value) pair
- Entry ADT methods:
 - **getKey()**: returns the key associated with this entry
 - getValue(): returns the value paired with the key associated with this entry

- Priority Queue ADT:
 - insert(k, x)
 inserts an entry with key
 k and value x
 - removeMin()
 removes and returns the
 entry with smallest key
 - min()
 returns, but does not
 remove, an entry with
 smallest key
 - size(), isEmpty()

Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the key of entry e of P; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(e,x): Replace with x and return the value of entry e of P.

Example

Operation	Output	P
insert(5,A)	e_1	(5,A)
insert(3,B)	e_2	(3,B),(5,A)
insert(7,C)	e_3	(3,B),(5,A),(7,C)
min()	e_2	(3,B),(5,A),(7,C)
$key(e_2)$	3	(3,B),(5,A),(7,C)
$remove(e_1)$	e_1	(3,B),(7,C)
replaceKey(e ₂ ,9)	3	(7,C),(9,B)
replaceValue(e_3 , D)	C	(7,D),(9,B)
$remove(e_2)$	e_2	(7,D)

Analysis

Method	Unsorted List	Sorted List	Heap
size, isEmpty	O(1)	O(1)	O(1)
insert	O(1)	O(n)	$O(\log n)$
min	O(n)	O(1)	O(1)
removeMin	O(n)	O(1)	$O(\log n)$
remove	O(1)	O(1)	$O(\log n)$
replaceKey	O(1)	O(n)	$O(\log n)$
replaceValue	O(1)	O(1)	O(1)

Running times of the methods of an adaptable priority queue of size n, realized by means of an unsorted list, sorted list, and heap, respectively.

The space requirement is **O(n)**

CPSC 3200

End of Chapter 8