Data Structure & Algorithms in

JAVA

5th edition Michael T. Goodrich Roberto Tamassia Data Structures Algorithms

Chapter 9: Hash Tables, Maps, and Skip Lists

CPSC 3200

Algorithm Analysis and Advanced Data Structure

Chapter Topics

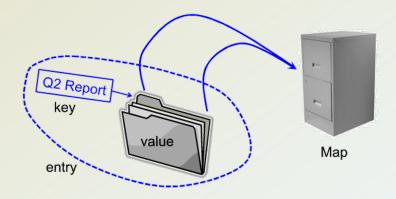
- Maps.
- Hash Tables.
- Dictionaries.

Maps

- A map models a searchable collection of key-value entries.
- A map stores key-value pairs (k, v) which we call entries.
- The main operations of a map are for searching, inserting, and deleting items.
- Multiple entries with the same key are not allowed (map ADT requires each key to be unique).

• Applications:

- address book.
- student-record database.



The Map ADT

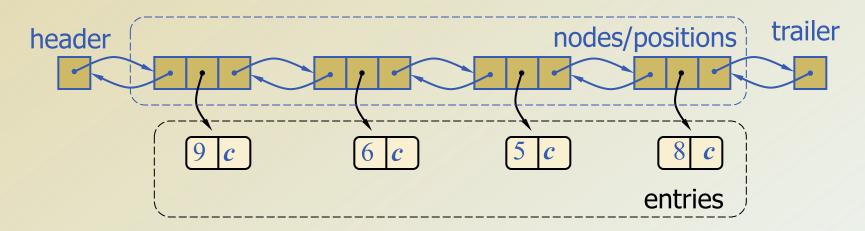
- get(k): if the map M has an entry with key k, return its associated value; else, return null.
- put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k.
- remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null.
- size(), isEmpty()
- **entrySet()**: return an iterable collection of the entries in **M**
- **keySet()**: return an iterable collection of the keys in **M**
- values(): return an iterator of the values in M

Example

Operation	Output	Мар
isEmpty()	true	Ø
put(5,A)	null	$\{(5,A)\}$
put(7,B)	null	$\{(5,A),(7,B)\}$
put(2,C)	null	$\{(5,A),(7,B),(2,C)\}$
put(8,D)	null	$\{(5,A),(7,B),(2,C),(8,D)\}$
put(2,E)	С	$\{(5,A),(7,B),(2,E),(8,D)\}$
get(7)	В	$\{(5,A),(7,B),(2,E),(8,D)\}$
get(4)	null	$\{(5,A),(7,B),(2,E),(8,D)\}$
get(2)	E	$\{(5,A),(7,B),(2,E),(8,D)\}$
size()	4	$\{(5,A),(7,B),(2,E),(8,D)\}$
remove(5)	Α	$\{(7,B),(2,E),(8,D)\}$
remove(2)	E	$\{(7,B),(8,D)\}$
get(2)	null	$\{(7,B),(8,D)\}$
isEmpty()	false	$\{(7,B),(8,D)\}$
entrySet()	$\{(7,B),(8,D)\}$	$\{(7,B),(8,D)\}$
keySet()	$\{7, 8\}$	$\{(7,B),(8,D)\}$
values()	$\{B,D\}$	$\{(7,B),(8,D)\}$

A Simple List-Based Map

- We can efficiently implement a map using an unsorted list
- We store the items of the map in a list S (based on a doublylinked list), in arbitrary order.



 The unsorted list implementation is effective only for maps of small size (e.g., historical record of logins to a workstation)

The get(k) Algorithm

Algorithm get(*k*):

Input: A key k

Output: The value for key k in M, or null if there is no key k in M
for each position p in S.positions() do
if p.element().getKey() = k then
return p.element().getValue()
return null {there is no entry with key equal to k}

Time complexity ?

The put(k,v) Algorithm

```
Algorithm put(k,v):
Input: A key-value pair (k,v)
Output: The old value associated with key k in M, or null if k is new
   for each position p in S.positions() do
    if p.element().getKey() = k then
        t \leftarrow p.element().getValue()
        B.set(p,(k,v))
        return t {return the old value}
   S.addLast((k,v))
   n \leftarrow n+1 {increment variable storing number of entries}
   return null {there was no previous entry with key equal to k}
```

Time complexity ?

The remove(k) Algorithm

Algorithm remove(k):

Input: A key k

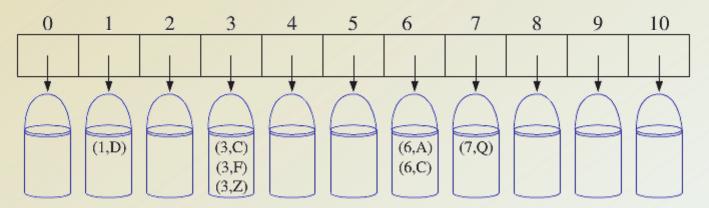
Output: The (removed) value for key k in M, or null if k is not in M

- for each position p in S.positions() do
- if p.element().getKey() = k then
 - t ← p.element().getValue()
 - S.remove(p)
 - $n \leftarrow n-1$ {decrement variable storing number of entries}
 - **return** t {return the removed value}
- **return** null {there is no entry with key equal to k}

Time complexity ?

Hash Functions and Hash Tables

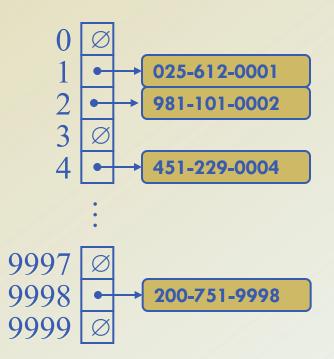
- A hash table for a given key type consists of
 - Hash function **h**
 - Array (called table) of size N
- When implementing a map with a hash table, the goal is to store item (k, v) at index i = h(k)
- A hash function h maps keys of a given type to integers in a fixed interval [0, N 1]



• The integer *h*(*k*) is called the hash value of key *k*

Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer.
- Our hash table uses an array of size
 N = 10,000 and the hash function
 h(x) = last four digits of x



Hash Functions

 A hash function is usually specified as the composition of two functions:

Hash code:

mapping the key k to integer h_1 : keys \rightarrow integers

Compression function:

mapping the hash code to an integer in range of indices [0, N-1] h_2 : integers \rightarrow [0, N - 1]

- The hash code is applied first, and the compression function is applied next on the result, i.e., h(x) = h₂(h₁(x))
- The goal of the hash function is to "disperse" the keys in an apparently random way.

Collision Handling

- Collisions occur when different elements are mapped to the same cell
- Separate Chaining: let each cell in the table point to a linked list of entries that map there

 Separate chaining is simple, but requires additional memory outside the table

Map with Separate Chaining

Delegate operations to a list-based map at each cell:

```
Algorithm get(k):
return A[h(k)].get(k)
```

```
Algorithm put(k,v):
t = A[h(k)].put(k,v)
if t = null then {k is a new key}
n = n + 1
return t
```

```
Algorithm remove(k):
t = A[h(k)].remove(k)
if t ≠ null then {k was found}
```

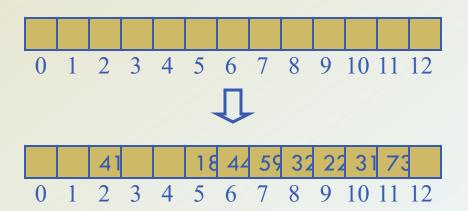
n = n - 1

return t

Linear Probing

- Open addressing: the colliding item is placed in a different cell of the table
- Linear probing: handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer sequence of probes

- Example:
 - $h(x) = x \mod 13$
 - Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order



End of Chapter 9