Data Structure & Algorithms in

JAVA 5th edition Michael T. Goodrich Roberto Tamassia

Data Structures e Algorithms Present Present

Chapter 13: Graph Algorithms

CPSC 3200

Algorithm Analysis and Advanced Data Structure

Chapter Topics

- Graphs.
- Data Structure for Graphs.
- Graph Traversals.
- Directed Graphs.
- Shortest Paths.

Graphs

- A graph is a pair (*V*, *E*), where:
 - *V* is a set of nodes, called vertices.
 - *E* is a collection of pairs of vertices, called edges.
 - Vertices and edges are positions and store elements.
- Example:
 - A vertex represents an airport and stores the three-letter airport code.
 - An edge represents a flight route between two airports and stores the mileage of the route.

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

CPSC 3200 University of Tennessee at Chattanooga – Summer 2013

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit

Transportation networks

- Highway network
- Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge:
 - **U** and **V** are the endpoints of **a**
- Edges incident on a vertex:
 - a, d, and b are incident on V
- Adjacent vertices:
 - U and V are adjacent
- Degree of a vertex:
 - X has degree 5
- Parallel edges:
 - h and i are parallel edges.
- Self-loop:
 - j is a self-loop

Terminology (cont.)

- Path:
 - sequence of alternating vertices and edges.
 - begins with a vertex.
 - ends with a vertex.
 - each edge is preceded and followed by its endpoints.
- Simple path:
 - path such that all its vertices and edges are distinct.
- Examples
 - P₁=(V,b,X,h,Z) is a simple path.
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple.

Terminology (cont.)

- Cycle:
 - circular sequence of alternating vertices and edges.
 - each edge is preceded and followed by its endpoints.
- Simple cycle:
 - cycle such that all its vertices and edges are distinct.
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple

Properties

Property 1

 $\Sigma_v \deg(v) = 2m$ Proof: each edge is counted twice.

Property 2

In an undirected graph with no self-loops and no multiple edges $m \le n (n - 1)/2$ Proof: each vertex has degree at most (n - 1)

Notation

nnumber of verticesmnumber of edgesdeg(v)degree of vertex v

Main Methods of the Graph ADT

- Vertices and edges:
 - are positions
 - store elements
- Accessor methods:
 - **endVertices(e)**: an array of the two endvertices of e.
 - **opposite(v, e):** the vertex opposite of v on e.
 - areAdjacent(v, w): true iff v and w are adjacent.
 - replace(v, x): replace element at vertex v with x.
 - replace(e, x): replace element at edge e with x.

- Update methods:
 - **insertVertex(o):** insert a vertex storing element o.
 - **insertEdge(v, w, o):** insert an edge (v,w) storing element o.
 - removeVertex(v): remove vertex v (and its incident edges).
 - removeEdge(e): remove edge e.
- Iterable collection methods:
 - incidentEdges(v): edges incident to v.
 - **vertices():** all vertices in the graph.
 - edges(): all edges in the graph.

Edge List Structure

- Vertex object:
 - element.
 - reference to position in vertex sequence.
- Edge object:
 - element.
 - origin vertex object.
 - destination vertex object.
 - reference to position in edge sequence.
- Vertex sequence:
 - sequence of vertex objects.
- Edge sequence:
 - sequence of edge objects.

а

Adjacency List Structure

- Edge list structure.
- Incidence sequence for each vertex:
 - sequence of references to edge objects of incident edges.
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices.

Adjacency Matrix Structure

- Edge list structure.
- Augmented vertex objects
 - Integer key (index) associated with vertex.
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices.
 - Null for non nonadjacent vertices.
- The "old fashioned" version just has 0 for no edge and 1 for edge.

Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n+m	n + m	n ²
incidentEdges(v)	т	deg(v)	n
areAdjacent (v, w)	т	$\min(\deg(v), \deg(w))$	1
insertVertex(<i>o</i>)	1	1	n ²
<pre>insertEdge(v, w, o)</pre>	1	1	1
removeVertex(v)	т	deg(v)	n ²
removeEdge(e)	1	1	1

Subgraphs

- A subgraph S of a graph G is a graph such that:
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G.

Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Trees and Forests

- A (free) tree is an undirected graph T such that:
 - T is connected.
 - T has no cycles.
 This definition of tree is different from the one of a rooted tree.
- A forest is an undirected graph without cycles.
- The connected components of a forest are trees

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph.
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.

- DFS on a graph with *n* vertices and *m* edges takes *O*(*n* + *m*) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices.
 - Find a cycle in the graph.

DFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm *DFS*(*G*)

Input graph G Output labeling of the edges of G as discovery edges and back edges for all $u \in G.vertices()$ setLabel(u, UNEXPLORED) for all $e \in G.edges()$ setLabel(e, UNEXPLORED) for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDDFS(G, v)

Algorithm DFS(G, v)**Input** graph *G* and a start vertex *v* of *G* **Output** labeling of the edges of **G** in the connected component of v as discovery edges and back edges setLabel(v, VISITED) for all $e \in G.incidentEdges(v)$ if getLabel(e) = UNEXPLORED $w \leftarrow opposite(v,e)$ if getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) DFS(G, w)else setLabel(e, BACK)

Example

Example (cont.)

Properties of DFS

Property 1

DFS(**G**, **v**) visits all the vertices and edges in the connected component of **v**

Property 2

The discovery edges labeled by **DFS**(**G**, **v**) form a spanning tree of the connected component of **v**.

Analysis of DFS

- Setting/getting a vertex/edge label takes *O*(1) time.
- Each vertex is labeled twice:
 - once as UNEXPLORED.
 - once as VISITED.
- Each edge is labeled twice:
 - once as UNEXPLORED.
 - once as DISCOVERY or BACK.
- Method incidentEdges is called once for each vertex.
- DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure.
 - Recall that $\Sigma_{v} \operatorname{deg}(v) = 2m$

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A **BFS** traversal of a graph G
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.

- BFS on a graph with *n* vertices and *m* edges takes *O*(*n* + *m*) time
- **BFS** can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices.
 - Find a simple cycle, if there is one.

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm BFS(G)
```

Input graph G Output labeling of the edges and partition of the vertices of G for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)for all $e \in G.edges()$ setLabel(e, UNEXPLORED)for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDBFS(G, v) Algorithm BFS(G, s) $L_0 \leftarrow$ new empty sequence $L_0.addLast(s)$ setLabel(s, VISITED) $i \leftarrow 0$ while $\neg L_i$ is Empty() $L_{i+1} \leftarrow$ new empty sequence for all $v \in L_i$ elements() for all $e \in G.incidentEdges(v)$ if getLabel(e) = UNEXPLORED $w \leftarrow opposite(v,e)$ if getLabel(w) = UNEXPLORED setLabel(e, DISCOVERY) setLabel(w, VISITED) L_{i+1} .addLast(w) else setLabel(e, CROSS) $i \leftarrow i + 1$

Example

F

F

Example (cont.)

Example (cont.)

Properties

Notation

G_s: connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of *T_s* from *s* to *v* has *i* edges.
- Every path from s to v in G_s has at least i edges.

Analysis

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice :
 - once as UNEXPLORED.
 - once as VISITED.
- Each edge is labeled twice:
 - once as UNEXPLORED.
 - once as DISCOVERY or CROSS.
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex.
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\mathbf{S}_{v} \operatorname{deg}(v) = 2m$

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	\checkmark	\checkmark
Shortest paths		\checkmark
Biconnected components	\checkmark	

 L_1

CPSC 3200 University of Tennessee at Chattanooga – Summer 2013

DFS vs. BFS (cont.)

Back edge (v,w)

w is an ancestor of *v* in the tree of discovery edges

Cross edge (v,w)

w is in the same level as *v* or in the next level

CPSC 3200 University of Tennessee at Chattanooga – Summer 2013

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices *u* and *z* using the template method pattern
- We call *DFS*(*G*, *u*) with *u* as the start vertex
- We use a stack *S* to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, v, z)
  setLabel(v, VISITED)
  S.push(v)
  if v = z
    return S.elements()
  for all e \in G.incidentEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
       if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         S.push(e)
         pathDFS(G, w, z)
         S.pop(e)
       else
         setLabel(e, BACK)
  S.pop(v)
```

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge.
- Edge weights may represent, distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- Given a weighted graph and two vertices *u* and *v*, we want to find a path of minimum total weight between *u* and *v*.
 - Length of a path is the sum of the weights of its edges.
- Example:
 - Shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations
 - Driving directions

Shortest Path Properties

Property 1:

A subpath of a shortest path is itself a shortest path.

Property 2:

There is a tree of shortest paths from a start vertex to all the other vertices.

Example:

Tree of shortest paths from Providence.

Dijkstra's Algorithm

- The distance of a vertex *v* from a vertex *s* is the length of a shortest path between *s* and *v*.
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex *s*.
- Assumptions:
 - the graph is connected.
 - the edges are undirected.
 - the edge weights are nonnegative.

- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices.
- We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices.
- At each step
 - We add to the cloud the vertex *u* outside the cloud with the smallest distance label, *d*(*u*).
 - We update the labels of the vertices adjacent to *u*.

Edge Relaxation

- Consider an edge *e* = (*u*,*z*) such that
 - *u* is the vertex most recently added to the cloud
 - *z* is not in the cloud
- The relaxation of edge *e* updates distance *d*(*z*) as follows:
 d(*z*) ← min{*d*(*z*),*d*(*u*) + weight(e)}

Example

Example (cont.)

Dijkstra's Algorithm

- A heap-based adaptable priority queue with locationaware entries stores the vertices outside the cloud
 - Key: distance
 - Value: vertex
 - Recall that method *replaceKey(l,k)* changes the key of entry *l*
- We store two labels with each vertex:
 - Distance
 - Entry in priority queue

Algorithm *DijkstraDistances*(G, s) $Q \leftarrow$ new heap-based priority queue for all $v \in G.vertices()$ if v = ssetDistance(v, 0) else setDistance(v, ∞) $l \leftarrow Q.insert(getDistance(v), v)$ setEntry(v, l) while $\neg Q.isEmpty()$ $l \leftarrow O.removeMin()$ $u \leftarrow l.getValue()$ for all $e \in G.incidentEdges(u)$ { relax e } $z \leftarrow G.opposite(u,e)$ $r \leftarrow getDistance(u) + weight(e)$ if r < getDistance(z)setDistance(z,r) Q.replaceKey(getEntry(z), r)

Analysis of Dijkstra's Algorithm

- Graph operations
 - Method incidentEdges is called once for each vertex
- Label operations
 - We set/get the distance and locator labels of vertex *z* **O**(deg(*z*)) times
 - Setting/getting a label takes **O**(1) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes *O*(log *n*) time
 - The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time
- Dijkstra's algorithm runs in O((n + m) log n) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$
- The running time can also be expressed as *O*(*m* log *n*) since the graph is connected

End of Chapter 13