


• Graphs.
• Data	Structure	for	Graphs.
• Graph	Traversals.
• Directed	Graphs.
• Shortest	Paths.
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• A	graph	is	a	pair	(V, E),	where:
• V is	a	set	of	nodes,	called	vertices.
• E is	a	collection	of	pairs	of	vertices,	called	edges.
• Vertices	and	edges	are	positions	and	store	elements.

• Example:
• A	vertex	represents	an	airport	and	stores	the	three-letter	airport	
code.
• An	edge	represents	a	flight	route	between	two	airports	and	stores	
the	mileage	of	the	route.

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1387174
3

1843

1099
1120

1233
337

2555

142

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 3© 2010 Goodrich, Tamassia



• Directed	edge
• ordered	pair	of	vertices (u,v)
• first	vertex	u is	the	origin
• second	vertex	v is	the	destination
• e.g.,	a	flight

• Undirected	edge
• unordered	pair	of	vertices (u,v)
• e.g.,	a	flight	route

• Directed	graph
• all	the	edges	are	directed
• e.g.,	route	network

• Undirected	graph
• all	the	edges	are	undirected
• e.g.,	flight	network

ORD PVD
flight
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cslab1bcslab1a• Electronic	circuits
• Printed	circuit	board
• Integrated	circuit

• Transportation	networks
• Highway	network
• Flight	network

• Computer	networks
• Local	area	network
• Internet
• Web

• Databases
• Entity-relationship	diagram
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• End	vertices (or	endpoints)	of	
an	edge:
• U and	V are	the	endpoints	of	a

• Edges	incident on	a	vertex:
• a,	d,	and	b are	incident	on	V

• Adjacent	vertices:
• U and	V are	adjacent

• Degree	of	a	vertex:
• X has	degree	5	

• Parallel	edges:
• h and	i are	parallel	edges.

• Self-loop:
• j is	a	self-loop
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P1

• Path:
• sequence	of	alternating	vertices	
and	edges.
• begins	with	a	vertex.
• ends	with	a	vertex.
• each	edge	is	preceded	and	
followed	by	its	endpoints.

• Simple	path:
• path	such	that	all	its	vertices	
and	edges	are	distinct.

• Examples
• P1=(V,b,X,h,Z)	is	a	simple	path.
• P2=(U,c,W,e,X,g,Y,f,W,d,V)	is	a	
path	that	is	not	simple.
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• Cycle:
• circular	sequence	of	alternating	
vertices	and	edges.
• each	edge	is	preceded	and	
followed	by	its	endpoints.

• Simple	cycle:
• cycle	such	that	all	its	vertices	
and	edges	are	distinct.

• Examples
• C1=(V,b,X,g,Y,f,W,c,U,a,V)	is	a	
simple	cycle
• C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is	a	
cycle	that	is	not	simple
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Notation
n number	of	vertices
m number	of	edges

deg(v) degree	of	vertex	v

Property	1
Sv deg(v) = 2m
Proof: each	edge	is	
counted	twice.

Property	2
In	an	undirected	graph	
with	no	self-loops	and	
no	multiple	edges
m £ n (n - 1)/2

Proof: each	vertex	has	
degree	at	most	(n - 1)

Example
n n = 4
n m = 6
n deg(v) = 3

CPSC 3200 
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• Vertices	and	edges:
• are	positions
• store	elements

• Accessor methods:
• endVertices(e): an	array	of	the	
two	endvertices of	e.
• opposite(v,	e): the	vertex	
opposite	of	v	on	e.
• areAdjacent(v,	w): true	iff v	and	
w	are	adjacent.
• replace(v,	x): replace	element	at	
vertex	v	with	x.
• replace(e,	x): replace	element	at	
edge	e	with	x.

• Update	methods:
• insertVertex(o): insert	a	vertex	
storing	element	o.
• insertEdge(v,	w,	o): insert	an	
edge	(v,w)	storing	element	o.
• removeVertex(v): remove	
vertex	v	(and	its	incident	edges).
• removeEdge(e): remove	edge	e.

• Iterable	collection	methods:
• incidentEdges(v): edges	
incident	to	v.
• vertices(	): all	vertices	in	the	
graph.
• edges(	): all	edges	in	the	graph.
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• Vertex	object:
• element.
• reference	to	position	in	
vertex	sequence.

• Edge	object:
• element.
• origin	vertex	object.
• destination	vertex	object.
• reference	to	position	in	
edge	sequence.

• Vertex	sequence:
• sequence	of	vertex	objects.

• Edge	sequence:
• sequence	of	edge	objects.

v
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d

u v w z

b c d
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• Edge	list	structure.
• Incidence	sequence	for	
each	vertex:
• sequence	of	
references	to	edge	
objects	of	incident	
edges.

• Augmented	edge	objects
• references	to	
associated	positions	
in	incidence	
sequences	of	end	
vertices.

u

v

w
a b

a

u v w

b
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• Edge	list	structure.
• Augmented	vertex	objects
• Integer	key	(index)	
associated	with	vertex.

• 2D-array	adjacency	array
• Reference	to	edge	object	
for	adjacent	vertices.
• Null	for	non	
nonadjacent	vertices.

• The	“old	fashioned”	
version	just	has	0	for	no	
edge	and	1	for	edge.

u

v

w
a b

0 1 2
0 Æ Æ

1 Æ

2 Æ Æa

u v w0 1 2

b
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§ n vertices, m edges
§ no parallel edges
§ no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1
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• A	subgraph S	of	a	graph	G	is	a	
graph	such	that:
• The	vertices	of	S	are	a	
subset	of	the	vertices	of	G
• The	edges	of	S	are	a	subset	
of	the	edges	of	G

• A	spanning	subgraph of	G	is	a	
subgraph that	contains	all	the	
vertices	of	G.

Subgraph

Spanning subgraph
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• A	graph	is	connected	if	there	
is	a	path	between	every	pair	
of	vertices.

• A	connected	component	of	a	
graph	G	is	a	maximal	
connected	subgraph of	G. Connected graph

Non connected graph with two 
connected components

CPSC 3200 
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17

• A	(free)	tree	is	an	
undirected	graph	T	such	
that:
• T	is	connected.
• T	has	no	cycles.
This	definition	of	tree	is	
different	from	the	one	of	a	
rooted	tree.

• A	forest	is	an	undirected	
graph	without	cycles.

• The	connected	
components	of	a	forest	
are	trees

Tree

Forest
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• A	spanning	tree	of	a	connected	
graph	is	a	spanning	subgraph
that	is	a	tree.

• A	spanning	tree	is	not	unique	
unless	the	graph	is	a	tree.

• Spanning	trees	have	
applications	to	the	design	of	
communication	networks.

• A	spanning	forest	of	a	graph	is	
a	spanning	subgraph that	is	a	
forest.

Graph

Spanning tree
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• Depth-first	search	(DFS)	is	
a	general	technique	for	
traversing	a	graph.

• A	DFS	traversal	of	a	graph	G	
• Visits	all	the	vertices	and	edges	
of	G.
• Determines	whether	G	is	
connected.
• Computes	the	connected	
components	of	G.
• Computes	a	spanning	forest	of	G.

• DFS	on	a	graph	with	n
vertices	and	m edges	
takes	O(n + m ) time

• DFS	can	be	further	
extended	to	solve	other	
graph	problems
• Find	and	report	a	path	
between	two	given	vertices.
• Find	a	cycle	in	the	graph.

CPSC 3200 
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• The	algorithm	uses	a	
mechanism	for	setting	and	
getting	“labels”	of	vertices	and	
edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e Î G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
CPSC 3200 
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Property	1
DFS(G, v) visits	all	the	
vertices	and	edges	in	the	
connected	component	of	v

Property	2
The	discovery	edges	labeled	
by	DFS(G, v) form	a	spanning	
tree	of	the	connected	
component	of	v.

DB
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C

E
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• Setting/getting	a	vertex/edge	label	takes	O(1) time.
• Each	vertex	is	labeled	twice:
• once	as	UNEXPLORED.
• once	as	VISITED.

• Each	edge	is	labeled	twice:
• once	as	UNEXPLORED.
• once	as	DISCOVERY	or	BACK.

• Method	incidentEdges is	called	once	for	each	vertex.
• DFS	runs	in	O(n + m) time	provided	the	graph	is	
represented	by	the	adjacency	list	structure.
• Recall	that	Sv deg(v) = 2m

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 24© 2010 Goodrich, Tamassia



• Breadth-first	search	(BFS)
is	a	general	technique	for	
traversing	a	graph.

• A	BFS traversal	of	a	graph	G	
• Visits	all	the	vertices	and	edges	
of	G.
• Determines	whether	G	is	
connected.
• Computes	the	connected	
components	of	G.
• Computes	a	spanning	forest	of	G.

• BFS on	a	graph	with	n
vertices	and	m edges	
takes	O(n + m ) time

• BFS can	be	further	
extended	to	solve	other	
graph	problems:
• Find	and	report	a	path	with	
the	minimum	number	of	
edges	between	two	given	
vertices.
• Find	a	simple	cycle,	if	there	
is	one.

CPSC 3200 
University of Tennessee at Chattanooga – Summer 2013 25© 2010 Goodrich, Tamassia



• The	algorithm	uses	a	
mechanism	for	setting	and	
getting	“labels”	of	vertices	
and	edges

Algorithm BFS(G, s)
L0¬ new empty sequence
L0.addLast(s)
setLabel(s, VISITED)
i ¬ 0
while ¬Li.isEmpty()

Li +1¬ new empty sequence
for all v Î Li.elements() 

for all e Î G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ¬ opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.addLast(w)

else
setLabel(e, CROSS)

i ¬ i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u Î G.vertices()
setLabel(u, UNEXPLORED)

for all e Î G.edges()
setLabel(e, UNEXPLORED)

for all v Î G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Notation
Gs:	connected	component	of	s

Property	1
BFS(G, s) visits	all	the	vertices	and	
edges	of	Gs

Property	2
The	discovery	edges	labeled	by	
BFS(G, s) form	a	spanning	tree	Ts of	
Gs

Property	3
For	each	vertex	v in	Li
• The	path	of		Ts from	s to	v has	i edges.
• Every	path	from	s to	v in	Gs has	at	
least	i edges.
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• Setting/getting	a	vertex/edge	label	takes	O(1)	time
• Each	vertex	is	labeled	twice	:
• once	as	UNEXPLORED.
• once	as	VISITED.

• Each	edge	is	labeled	twice:
• once	as	UNEXPLORED.
• once	as	DISCOVERY	or	CROSS.

• Each	vertex	is	inserted	once	into	a	sequence	Li
• Method	incidentEdges is	called	once	for	each	vertex.
• BFS	runs	in	O(n	+m)	time	provided	the	graph	is	
represented	by	the	adjacency	list	structure
• Recall	that	Svdeg(v) =	2m
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Back	edge (v,w)
• w is	an	ancestor	of	v in	the	
tree	of	discovery	edges

Cross	edge (v,w)
• w is	in	the	same	level	as	v or	
in	the	next	level
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• We	can	specialize	the	DFS	
algorithm	to	find	a	path	
between	two	given	vertices	u
and	z using	the	template	
method	pattern

• We	call	DFS(G, u) with	u as	the	
start	vertex

• We	use	a	stack	S to	keep	track	
of	the	path	between	the	start	
vertex	and	the	current	vertex

• As	soon	as	destination	vertex	z
is	encountered,	we	return	the	
path	as	the	contents	of	the	
stack	

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e Î G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ¬ opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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• In	a	weighted	graph,	each	edge	has	an	associated	numerical	
value,	called	the	weight	of	the	edge.

• Edge	weights	may	represent,	distances,	costs,	etc.
• Example:
• In	a		flight	route	graph,	the	weight	of	an	edge	represents	the	
distance	in	miles	between	the	endpoint	airports
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• Given	a	weighted	graph	and	two	vertices	u and	v,	we	want	to	find	a	
path	of	minimum	total	weight	between	u and	v.
• Length	of	a	path	is	the	sum	of	the	weights	of	its	edges.

• Example:
• Shortest	path	between	Providence	and	Honolulu

• Applications
• Internet	packet	routing	
• Flight	reservations
• Driving	directions
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Property	1:
A	subpath of	a	shortest	path	is	itself	a	shortest	path.

Property	2:
There	is	a	tree	of	shortest	paths	from	a	start	vertex	to	all	the	other	
vertices.

Example:
Tree	of	shortest	paths	from	Providence.
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• The	distance	of	a	vertex	v
from	a	vertex	s is	the	
length	of	a	shortest	path	
between	s and	v.

• Dijkstra’s algorithm	
computes	the	distances	of	
all	the	vertices	from	a	
given	start	vertex	s.

• Assumptions:
• the	graph	is	connected.
• the	edges	are	undirected.
• the	edge	weights	are	
nonnegative.

• We	grow	a	“cloud”	of	vertices,	
beginning	with	s and	eventually	
covering	all	the	vertices.

• We	store	with	each	vertex	v a	label
d(v) representing	the	distance	of	v
from	s in	the	subgraph consisting	
of	the	cloud	and	its	adjacent	
vertices.

• At	each	step
• We	add	to	the	cloud	the	vertex	

u outside	the	cloud	with	the	
smallest	distance	label,	d(u).
• We	update	the	labels	of	the	
vertices	adjacent	to	u.
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• Consider	an	edge	e = (u,z) such	
that
• u is	the	vertex	most	recently	
added	to	the	cloud

• z is	not	in	the	cloud

• The	relaxation	of	edge	e updates	
distance	d(z) as	follows:
d(z) ¬ min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e
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• A	heap-based	adaptable	
priority	queue	with	location-
aware	entries	stores	the	
vertices	outside	the	cloud
• Key:	distance
• Value:	vertex
• Recall	that	method	

replaceKey(l,k) changes	the	key	
of	entry	l

• We	store	two	labels	with	each	
vertex:
• Distance
• Entry	in	priority	queue

Algorithm DijkstraDistances(G, s)
Q ¬ new heap-based priority queue
for all v Î G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ¥)

l ¬ Q.insert(getDistance(v), v)
setEntry(v, l)

while ¬Q.isEmpty()
l ¬ Q.removeMin()
u ¬ l.getValue()
for all e Î G.incidentEdges(u) { relax e }

z ¬ G.opposite(u,e)
r ¬ getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getEntry(z), r)
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• Graph	operations
• Method	incidentEdges is	called	once	for	each	vertex

• Label	operations
• We	set/get	the	distance	and	locator	labels	of	vertex	z O(deg(z)) times
• Setting/getting	a	label	takes	O(1) time

• Priority	queue	operations
• Each	vertex	is	inserted	once	into	and	removed	once	from	the	priority	
queue,	where	each	insertion	or	removal	takes	O(log n) time

• The	key	of	a	vertex	in	the	priority	queue	is	modified	at	most	deg(w) times,	
where	each	key	change	takes	O(log n) time	

• Dijkstra’s algorithm	runs	in	O((n + m) log n) time	provided	the	graph	
is	represented	by	the	adjacency	list	structure
• Recall	that	Sv deg(v) = 2m

• The	running	time	can	also	be	expressed	as	O(m log n) since	the	graph	
is	connected
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