Data Structure \& Algorithms in

 JAVA $5^{\text {th }}$ edition Michael T. Goodrich Roberto Tamassia

Chapter 13: Graph Algorithms

CPSC 3200

Algorithm Analysis and Advanced Data Structure

Chapter Topics

- Graphs.
- Data Structure for Graphs.
- Graph Traversals.
- Directed Graphs.
- Shortest Paths.

Graphs

- A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where:
- V is a set of nodes, called vertices.
- \boldsymbol{E} is a collection of pairs of vertices, called edges.
- Vertices and edges are positions and store elements.
- Example:
- A vertex represents an airport and stores the three-letter airport code.
- An edge represents a flight route between two airports and stores the mileage of the route.

Edge Types

- Directed edge
- ordered pair of vertices (u,v)
- first vertex \boldsymbol{u} is the origin
- second vertex \boldsymbol{v} is the destination
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u,v)
- e.g., a flight route

- Directed graph
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases
- Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge:
- \mathbf{U} and \mathbf{V} are the endpoints of \mathbf{a}
- Edges incident on a vertex:
$\cdot \mathbf{a}, \mathbf{d}$, and \mathbf{b} are incident on \mathbf{V}
- Adjacent vertices:
- \mathbf{U} and \mathbf{V} are adjacent
- Degree of a vertex:
- X has degree 5
- Parallel edges:
- \mathbf{h} and \mathbf{i} are parallel edges.
- Self-loop:

- \mathbf{j} is a self-loop

Terminology (cont.)

- Path:
- sequence of alternating vertices and edges.
- begins with a vertex.
- ends with a vertex.
- each edge is preceded and followed by its endpoints.
- Simple path:
- path such that all its vertices and edges are distinct.
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path.
- $\mathrm{P}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V})$ is a path that is not simple.

Terminology (cont.)

- Cycle:
- circular sequence of alternating vertices and edges.
- each edge is preceded and followed by its endpoints.
- Simple cycle:
- cycle such that all its vertices and edges are distinct.
- Examples
- $\mathrm{C}_{1}=(\mathrm{V}, \mathrm{b}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{c}, \mathrm{U}, \mathrm{a}, \mathrm{V})$ is a simple cycle
- $\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}, \mathrm{U})$ is a
 cycle that is not simple

Properties

Property 1

$\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
Proof: each edge is counted twice.
Property 2
In an undirected graph with no self-loops and no multiple edges $\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2$
Proof: each vertex has degree at most ($\boldsymbol{n}-1$)

Notation

$n \quad$ number of vertices
m $\operatorname{deg}(\boldsymbol{v}) \quad$ degree of vertex \boldsymbol{v}

Example

- $n=4$
- $m=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Main Methods of the Graph ADT

- Vertices and edges:
- are positions
- store elements
- Accessor methods:
- endVertices(e): an array of the two endvertices of e.
- opposite(v, e): the vertex opposite of v on e .
- areAdjacent($v, w)$: true iff v and w are adjacent.
- replace(v, x): replace element at vertex v with x .
- replace((e, x) : replace element at edge e with x .
- Update methods:
- insertVertex(o): insert a vertex storing element o .
- insertEdge ($\mathbf{v}, \mathbf{w}, \mathbf{o}$): insert an edge (v, w) storing element o .
- removeVertex(v): remove vertex v (and its incident edges).
- removeEdge(e): remove edge e.
- Iterable collection methods:
- incidentEdges(v): edges incident to v .
- vertices(): all vertices in the graph.
- edges(): all edges in the graph.

Edge List Structure

- Vertex object:
- element.
- reference to position in vertex sequence.
- Edge object:

- element.
- origin vertex object.
- destination vertex object.
- reference to position in edge sequence.
- Vertex sequence:
- sequence of vertex objects.
- Edge sequence:
- sequence of edge objects.

Adjacency List Structure

- Edge list structure.
- Incidence sequence for each vertex:
- sequence of references to edge objects of incident edges.
- Augmented edge objects
- references to associated positions in incidence sequences of end vertices.

Adjacency Matrix Structure

- Edge list structure.
- Augmented vertex objects
- Integer key (index) associated with vertex.
- 2D-array adjacency array
- Reference to edge object for adjacent vertices.
- Null for non nonadjacent vertices.
- The "old fashioned" version just has 0 for no edge and 1 for edge.

Performance

n vertices, m edges - no porallel edges	Edge List	Adjacency List	Adjacency Matrix
no sesfl-loops			

Subgraphs

- A subgraph S of a graph G is a graph such that:
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G.

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that:
- T is connected.
- T has no cycles.

This definition of tree is different from the one of a rooted tree.

- A forest is an undirected graph without cycles.
- The connected components of a forest are trees

Tree

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have

Graph

Spanning tree

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph.
- A DFS traversal of a graph G
- Visits all the vertices and edges of G.
- Determines whether G is connected.
- Computes the connected components of G.
- Computes a spanning forest of G .
- DFS on a graph with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices.
- Find a cycle in the graph.

DFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm DFS(G)
    Input graph G
    Output labeling of the edges of G
        as discovery edges and
        back edges
    for all u\inG.vertices()
    setLabel(u, UNEXPLORED)
    for all e\inG.edges()
    setLabel(e, UNEXPLORED)
    for all v}\in\mathrm{ G.vertices()
    if getLabel(v)=UNEXPLORED
        DFS(G,v)
```

Algorithm $\operatorname{DFS}(G, v)$
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G} Output labeling of the edges of \boldsymbol{G} in the connected component of \boldsymbol{v} as discovery edges and back edges setLabel(v, VISITED) for all $\boldsymbol{e} \in$ G.incidentEdges(v) if $\operatorname{getLabel}(e)=U N E X P L O R E D$ $\boldsymbol{w} \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED
setLabel(e, DISCOVERY) $\operatorname{DFS}(G, w)$ else setLabel(e, BACK)

Example

unexplored vertex visited vertex
unexplored edge
\longrightarrow discovery edge

- - - back edge

Example (cont.)

Properties of DFS

Property 1

$\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ form a spanning tree of the connected component of \boldsymbol{v}.

Analysis of DFS

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time.
- Each vertex is labeled twice:
- once as UNEXPLORED.
- once as VISITED.
- Each edge is labeled twice:
- once as UNEXPLORED.
- once as DISCOVERY or BACK.
- Method incidentEdges is called once for each vertex.
- DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure.
- Recall that $\boldsymbol{\Sigma}_{\boldsymbol{v}} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G
- Visits all the vertices and edges of G.
- Determines whether G is connected.
- Computes the connected components of G.
- Computes a spanning forest of G .
- BFS on a graph with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- BFS can be further extended to solve other graph problems:
- Find and report a path with the minimum number of edges between two given vertices.
- Find a simple cycle, if there is one.

BFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm $\operatorname{BFS}(\boldsymbol{G})$

Input graph \boldsymbol{G}
Output labeling of the edges and partition of the vertices of \boldsymbol{G}
for all $\boldsymbol{u} \in$ G.vertices()
setLabel(u, UNEXPLORED)
for all $\boldsymbol{e} \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $\boldsymbol{v} \in$ G.vertices()
if $\operatorname{getLabel}(v)=\operatorname{UNEXPLORED}$ BFS(G, v)

```
Algorithm BFS(G, s)
    L
    L
    setLabel(s, VISITED)
    i}\leftarrow
    while }\neg\mp@subsup{L}{i}{
        \mp@subsup{\boldsymbol{L}}{i+1}{}}\leftarrow\leftarrow\mathrm{ new empty sequence
        for all v}\in\mp@subsup{L}{i}{}.elements(
            for all }e\inG.incidentEdges(v
            if getLabel(e)= UNEXPLORED
                        w}\leftarrow\mathrm{ opposite(v,e)
                            if getLabel(w) = UNEXPLORED
                setLabel(e, DISCOVERY)
                        setLabel(w, VISITED)
                        Li+1
            else
                        setLabel(e, CROSS)
        i}\leftarrow\boldsymbol{i}+
```


Example

unexplored vertex visited vertex
unexplored edge
\longrightarrow discovery edge

Example (cont.)

Example (cont.)

Properties

Notation

\boldsymbol{G}_{s} : connected component of \boldsymbol{s}
Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of $\boldsymbol{G}_{\boldsymbol{s}}$
Property 2

The discovery edges labeled by $\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ form a spanning tree \boldsymbol{T}_{s} of \boldsymbol{G}_{s}

Property 3

For each vertex \boldsymbol{v} in \boldsymbol{L}_{i}

- The path of \boldsymbol{T}_{s} from \boldsymbol{s} to \boldsymbol{v} has \boldsymbol{i} edges.
- Every path from \boldsymbol{s} to \boldsymbol{v} in $\boldsymbol{G}_{\boldsymbol{s}}$ has at least \boldsymbol{i} edges.

Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice :
- once as UNEXPLORED.
- once as VISITED.
- Each edge is labeled twice:
- once as UNEXPLORED.
- once as DISCOVERY or CROSS.
- Each vertex is inserted once into a sequence $\boldsymbol{L}_{\boldsymbol{i}}$
- Method incidentEdges is called once for each vertex.
- BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\mathbf{S}_{\boldsymbol{v}} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

DFS vs. BFS

DFS vs. BFS (cont.)

Back edge (v,w)

\boldsymbol{w} is an ancestor of \boldsymbol{v} in the tree of discovery edges

BFS

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices \boldsymbol{u} and z using the template method pattern
- We call $\boldsymbol{D F S}(\boldsymbol{G}, \boldsymbol{u})$ with \boldsymbol{u} as the start vertex
- We use a stack \boldsymbol{S} to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex \boldsymbol{z} is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, \(v, z)\)
    setLabel(v, VISITED)
    S.push(v)
    if \(\boldsymbol{v}=\boldsymbol{z}\)
        return S.elements()
    for all \(\boldsymbol{e} \in\) G.incidentEdges(v)
        if \(\operatorname{getLabel}(e)=U N E X P L O R E D\)
        \(\boldsymbol{w} \leftarrow\) opposite \((v, e)\)
        if \(\operatorname{getLabel}(w)=\) UNEXPLORED
            setLabel(e, DISCOVERY)
            S.push(e)
            pathDFS(G, w, z)
            S.pop(e)
        else
            setLabel(e, BACK)
    S.pop(v)
```


Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge.
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between \boldsymbol{u} and \boldsymbol{v}.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions

Shortest Path Properties

Property 1:

A subpath of a shortest path is itself a shortest path.

Property 2:

There is a tree of shortest paths from a start vertex to all the other vertices.

Example:

Tree of shortest paths from Providence.

Dijkstra's Algorithm

- The distance of a vertex v from a vertex \boldsymbol{s} is the length of a shortest path between \boldsymbol{s} and \boldsymbol{v}.
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex \boldsymbol{s}.
- Assumptions:
- the graph is connected.
- the edges are undirected.
- the edge weights are nonnegative.
- We grow a "cloud" of vertices, beginning with \boldsymbol{s} and eventually covering all the vertices.
- We store with each vertex \boldsymbol{v} a label $\boldsymbol{d}(\boldsymbol{v})$ representing the distance of \boldsymbol{v} from s in the subgraph consisting of the cloud and its adjacent vertices.
- At each step
- We add to the cloud the vertex \boldsymbol{u} outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$.
- We update the labels of the vertices adjacent to \boldsymbol{u}.

Edge Relaxation

- Consider an edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{z})$ such that
- \boldsymbol{u} is the vertex most recently added to the cloud
- z is not in the cloud
- The relaxation of edge \boldsymbol{e} updates distance $\boldsymbol{d}(\boldsymbol{z})$ as follows: $d(\boldsymbol{z}) \leftarrow \min \{d(\boldsymbol{z}), \boldsymbol{d}(\boldsymbol{u})+\boldsymbol{w e i g h t}(\boldsymbol{e})\}$

Example

Example (cont.)

Dijkstra's Algorithm

- A heap-based adaptable priority queue with locationaware entries stores the vertices outside the cloud
- Key: distance
- Value: vertex
- Recall that method replaceKey (l, k) changes the key of entry l
- We store two labels with each vertex:
- Distance
- Entry in priority queue

```
Algorithm DijkstraDistances(G, s)
    \(\boldsymbol{Q} \leftarrow\) new heap-based priority queue
    for all \(\boldsymbol{v} \in\) G.vertices()
        if \(v=s\)
        setDistance(v, 0)
        else
            setDistance \((v, \infty)\)
        \(l \leftarrow\) Q.insert(getDistance(v), v)
        setEntry \((v, l)\)
    while \(\neg\) Q.isEmpty ()
        \(l \leftarrow\) Q.removeMin()
        \(u \leftarrow\) l.getValue()
        for all \(\boldsymbol{e} \in\) G.incidentEdges( \(u)\{\) relax \(\boldsymbol{e}\) \}
        \(\boldsymbol{z} \leftarrow\) G.opposite \((\boldsymbol{u}, \boldsymbol{e})\)
        \(r \leftarrow\) getDistance \((\boldsymbol{u})+\) weight \((\boldsymbol{e})\)
        if \(r<\) getDistance \((\boldsymbol{z})\)
            setDistance \((z, r)\)
            Q.replaceKey(getEntry(z), r)
```


Analysis of Dijkstra's Algorithm

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(\boldsymbol{z}))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most $\operatorname{deg}(\boldsymbol{w})$ times, where each key change takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

End of Chapter 13

